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Zusammenfassung

Die Theorie der anisotropen Funktionenräume entwickelte sich parallel zur The-
orie von isotropen Funktionenräumen. Wir verweisen insbesondere auf Arbeiten
von S.M. Nikol’skĭı, O.V. Besov.
Die anisotropen Funktionenräume erscheinen dann, wenn man Differentialope-
ratoren untersucht, deren maximale Ableitungsordnungen verschieden von Rich-
tung zu Richtung sind, z.B. der Operator der Wärmeleitungsgleichung. Falls
1 < p < ∞ und (s1, . . . , sn) ein n−Tupel von natürlichen Zahlen sind, dann ist

W (s1,...,sn)
p (Rn) = W s,a

p (Rn)

=

{
f ∈ S ′(Rn) : ‖f |Lp(Rn)‖+

n∑

k=1

∥∥∥∥
∂skf

∂xsk
k

|Lp(Rn)

∥∥∥∥ < ∞
}

der klassische anisotrope Sobolev-Raum auf Rn. In Vergleich zum isotropen
Sobolev-Raum (s1 = · · · = sn) sind die Regularitätseigenschaften einer Funk-
tion aus W s,a

p (Rn) von der in Rn ausgewählten Richtung abhängig. Die Zahl s,
die durch

1

s
=

1

n

(
1

s1

+ · · ·+ 1

sn

)
,

definiert ist, wird gewöhnlich als ’mittlere Glattheit’ bezeichnet; a = (a1, . . . , an)
bezeichnet die ’Anisotropie’, wobei

a1 =
s

s1

, . . . , an =
s

sn

.

In der vorliegenden Arbeit werden Zusammenhänge zwischen fraktaler Geome-
trie und der Fourieranalysis, der Theorie der Funktionenräume sowie der Spek-
traltheorie einiger Differentialoperatoren untersucht.
Die Arbeit hat fünf Teile. Im ersten Kapitel stellen wir Grundlagen für anisotro-
pe Besov-Räume zusammen. Wir verwenden die Fourier-analytische Definition
von Bs,a

pq (Rn): eine Funktion f ∈ S ′(Rn) wird in eine Summe von ganzen

analytischen Funktionen (ϕj f̂)∨ zerlegt, die dann bezüglich `q und Lp(Rn),
gemessen werden.
Das zweite Kapitel widmet sich einigen wichtigen Eigenschaften der anisotropen
Besov-Räume.
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Das dritte Kapitel beschäftigt sich mit Zerlegungen (Atome, Wavelets) in aniso-
tropen Funktionenräumen. Unser Hauptziel in diesem Kapitel ist, das anisotrope
Gegenstück zu einem Resultat von H.Triebel(2003) zu beweisen. Der Haupt-
punkt unserer Untersuchung ist die Kombination der Waveletphilosophie mit
der Idee der Taylor-Entwicklung, d.h.

f(x) → f(2jax−m) mit f(x) → xβf(x),

für j ∈ N0, m ∈ Zn und β ∈ Nn
0 . Dann erhält man einfache explizite Wavelet-

Darstellungen, die gleichzeitig globales und lokales Verhalten charakterisieren.
In Kapitel 4 geben wir die Definition der anisotropen d−Mengen; das sind
z.B. anisotrope Cantor-Mengen. Wir studieren die Existenz und die Eigen-
schaften des Spur Operators trΓ, zwischen den Funktionenräumen, basierend
auf Wavelet-Darstellungen aus Kapitel 3. Damit erhalten wir asymptotisch
scharfe Abschätzungen der Approximationzahlen für den kompakten Spurop-
erator trΓ,

ak(trΓ : Bs,a
pp (Rn) ↪→ Lp(Γ)) ∼ k

1
d
(n

p
−s)− 1

p ,
n

p
≥ s >

n− d

p
.

Im letzten Kapitel betrachten wir den semi-elliptischen Differentialoperator

Au(x) = (−1)s1
∂2s1u(x)

∂x2s1
1

+ · · ·+ (−1)sn
∂2snu(x)

∂x2sn
n

+ u(x),

wobei s1, . . . , sn ∈ N und 1
s

= 1
n
( 1

s1
+ · · · + 1

sn
) . Der Operator A−1 ◦ trΓ ist

in W s,a
2 (Rn) eine kompakte, nicht-negative selbstadjungierte Abbildung. Für

seine Eigenwerte, gezählt entsprechend ihrer Vielfachheit und monoton geord-
net, enthält man mit Hilfe der Ergebnisse aus Kapitel 4,

c1k
− 1

d
(d+2s−n) ≤ λk(A

−1 ◦ trΓ) ≤ c2k
− 1

d
(d+2s−n), k ∈ N.

Diese Resultate werden abschließend mit ähnlichen, bereits bekannten (Farkas,
2001) verglichen.



Introduction

The theory of the anisotropic spaces has been developed from the very beginning
parallel to the theory of isotropic function spaces. We refer in particular to the
Russian school and works of S.M. Nikol’skĭı, O.V. Besov, V.P.Il’in [3, 35].
Let 1 < p < ∞ and (s1, ..., sn) be an n- tuple of natural numbers. Then

W s,a
p (Rn) =

{
f ∈ S ′(Rn) : ‖f |Lp(Rn)‖+

n∑

k=1

∥∥∥∥
∂skf

∂xsk
k

|Lp(Rn)

∥∥∥∥ < ∞
}

is the classical anisotropic Sobolev space on Rn. It is obvious that unlike in
case of the usual (isotropic) Sobolev space (s1 = ... = sn) the smoothness
properties of an element from W s,a

p (Rn) depend on the chosen direction in Rn.
The number s, defined by

1

s
=

1

n

(
1

s1

+ · · ·+ 1

sn

)
,

is usually called the mean smoothness, and a = (a1, ..., an),

a1 =
s

s1

, . . . , an =
s

sn

characterises the anisotropy. Similar to the isotropic situation the more general
anisotropic Bessel potential spaces (fractional Sobolev spaces) Hs,a

p (Rn), where
1 < p < ∞, s ∈ R and a = (a1, ..., an) is a given anisotropy, fit in the scales
of anisotropic Besov spaces Bs,a

pq (Rn), and anisotropic Triebel-Lizorkin spaces
F s,a

pq (Rn), respectively. It is well known that this theory has a more or less
complete counterpart to the basic facts (definitions, description via differences
and derivatives, elementary properties, embeddings for different metrics, inter-
polation) of isotropic spaces Bs

pq(Rn) and F s
pq(Rn).

The purpose of this work is to highlight some aspects concerning the close
connection between fractal geometry, the theory of function spaces, Fourier
analysis, and spectral theory of differential operators.
The thesis has five parts. In the first chapter we collect fundamentals about
anisotropic Besov spaces. We shall use the Fourier-analytical definition of
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Bs,a
pq (Rn), where any function f ∈ S ′(Rn) is decomposed in a sum of entire

analytic functions (ϕj f̂)∨ and this decomposition, measured in `q and Lp(Rn),
respectively, is used to introduce the spaces. This concept goes back to [44]
and [43], see [37, Chapter 4].
The second chapter is devoted to some important properties of the spaces
Bs,a

pq . In order to show the main results in chapter 3 and 4, we give in this
chapter some equivalent quasi-norms in Bs,a

pq , the anisotropic counterpart to
homogeneity estimate and at last the localization property in Bs,a

pp .
The third chapter deals with decompositions in anisotropic function spaces.
Several authors were concerned in the last years with the problem of obtain-
ing useful decompositions of anisotropic function spaces, too. A construction
of unconditional bases in Bs,a

pq (Rn) and F s,a
pq (Rn) spaces using Meyer wavelets

was obtained in [1], [2]; see, more recently, [24], [23], [25]; a different approach,
involving the ϕ-transform of Frazier and Jawerth (see [20], [21]) was followed
in [9], [10], see also [38]. The most recent contributions we know are made in
[6], [28], [29]; see also [4], [5].
Our main aim in this chapter is to prove an anisotropic counterpart of some
recent results on wavelet frames parallel to the isotropic case in [52]. The main
point of our approach is the combination of the wavelet philosophy with the
Taylor-expansion philosophy, that is,

f(x) → f(2jax−m) with f(x) → xβf(x), respectively,

for j ∈ N0, m ∈ Zn and β ∈ Nn
0 . Then one gets comparatively simple explicit

wavelet frames which reflect simultaneously global and local behaviour.
As a first goal in chapter 4 we define an anisotropic d−set, we study the
existence and properties of the trace operator acting between function spaces
based on wavelet frames. The main aim in this chapter is to present a new
method to estimate approximation numbers of compact trace operator as an
application of our wavelet decomposition. Namely, it turns out that

ak(trΓ : Bs,a
pp (Rn) ↪→ Lp(Γ)) ∼ k

1
d
(n

p
−s)− 1

p ,
n

p
≥ s >

n− d

p
,

as in the isotropic case, see [54].
In the last chapter we consider the semi-elliptic differential operator

Au(x) = (−1)s1
∂2s1u(x)

∂x2s1
1

+ · · ·+ (−1)sn
∂2snu(x)

∂x2sn
n

+ u(x)

and trΓ = idΓ ◦ trΓ. The main object of this chapter is to study spectral
properties of the operator A−1 ◦ trΓ acting in the anisotropic Sobolev spaces
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W s,a
2 (Rn). We will show that A−1 ◦ trΓ is compact, non-negative, and self-

adjoint in W s,a
2 (Rn) and that there exist constants c1, c2 > 0 such that its

positive eigenvalues, repeated according to multiplicity and ordered by their
magnitude, can be estimated by

c1k
− 1

d
(d+2s−n) ≤ λk(A

−1 ◦ trΓ) ≤ c2k
− 1

d
(d+2s−n), k ∈ N.

Finally, we compare results obtained by this method with the method obtained
by Farkas [18].





1 Anisotropic Besov spaces

1.1 General notation

As usual, Rn denotes the n-dimensional real Euclidean space, N the collection
of all natural numbers, N0 = N ∪ {0}, C stands for the complex numbers, and
Zn means the lattice of all points in Rn with integer-valued components. We
use the equivalence “∼” in ϕ(x) ∼ ψ(x) always to mean that there are two
positive numbers c1 and c2 such that

c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of x, where ϕ, ψ are non-negative functions. If a ∈ R
then a+ := max(a, 0). Let α = (α1, ..., αn) ∈ Nn

0 be a multi-index, then

|α| = α1 + ... + αn, α! = α1! · · ·αn!, α ∈ Nn
0 , (1.1)

the derivatives Dα have the usual meaning, xα means xα = xα1
1 · · · xαn

n for
x = (x1, ..., xn) ∈ Rn, and αγ = α1γ1 + · · ·+αnγn, γ ∈ Rn, stands for the scalar
product in Rn.
Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding of X in Y is continuous. All unimportant positive constants
will be denoted by c, occasionally with additional subscripts within the same
formula. We shall mainly deal with function spaces on Rn; so for convenience
we shall usually omit the “Rn” from their notation, if there is no danger of
confusion.

1.2 Anisotropic distance function

Let a = (a1, . . . , an) be a fixed n−tuple of positive numbers with a1 + · · ·+an =
n, then we call a an anisotropy. We shall denote amin = min{ai : 1 ≤ i ≤ n}
and amax = max{ai : 1 ≤ i ≤ n}. If a = (1, . . . , 1) we speak about the “isotropic
case”.
The action of t ∈ [0,∞) on x ∈ Rn is defined by the formula

tax = (ta1x1, . . . , t
anxn). (1.2)

13



14 Anisotropic Besov spaces

For t > 0 and s ∈ R we put tsax = (ts)ax. In particular we write t−ax = (t−1)ax
and 2−jax = (2−j)ax.

Definition 1.2.1 An anisotropic distance function is a continuous func-
tion u : Rn → R with the properties u(x) > 0 if x 6= 0 and u(tax) = tu(x) for
all t > 0 and all x ∈ Rn.

Remark 1.2.2 It is easy to see that uλ : Rn → R defined by

uλ(x) =

( n∑
i=1

|xi|
λ
ai

)1/λ

(1.3)

is an anisotropic distance function for every 0 < λ < ∞, u2 is usually called the
anisotropic distance of x to the origin, see [37, Sect. 4.2.1]. It is well known, see
[10, Sect. 1.2.3] and [57, Sect. 1.4], that any two anisotropic distance functions
u and u′ are equivalent (in the sense that there exist constants c, c′ > 0 such that
cu(x) ≤ u′(x) ≤ c′u(x) for all x ∈ Rn) and that if u is an anisotropic distance
function there exists a constant c > 0 such that u(x+y) ≤ c(u(x)+u(y)) for all
x, y ∈ Rn. We are interested to use smooth anisotropic distance functions. Note
that for appropriate values of λ one can obtain arbitrary (finite) smoothness of
the function uλ from (1.3), cf. [10, Sect. 1.2.4]. A standard method concerning
the construction of anisotropic distance functions in C∞(Rn\{0}) was given in
[42].

For x = (x1, ..., xn) ∈ Rn, x 6= 0, let |x|a be the unique positive number t such
that

x2
1

t2a1
+ · · ·+ x2

n

t2an
= 1 (1.4)

and let |0|a = 0; then | · |a is an anisotropic distance function in C∞(Rn\{0}),
see [57, Sect. 1.4/3,8]. Plainly, |x|a is in the isotropic case the Euclidean dis-
tance of x to the origin.

1.3 Anisotropic function spaces

Before introducing the function spaces under consideration we need to recall
some notation. By S(Rn) we denote the Schwartz space of all complex-valued,
infinitely differentiable and rapidly decreasing functions on Rn and by S ′(Rn)
the dual space of all tempered distributions on Rn. Furthermore, Lp(Rn) with
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0 < p ≤ ∞, stands for the usual quasi-Banach space with respect to the
Lebesgue measure, quasi-normed by

‖f | Lp(Rn)‖ :=
(∫

Rn

|f(x)|pdx
)1/p

,

with the obvious modification if p = ∞. If ϕ ∈ S(Rn) then

ϕ̂(ξ) ≡ (Fϕ)(ξ) := (2π)−n/2

∫

Rn

e−ixξϕ(x)dx, ξ ∈ Rn, (1.5)

denotes the Fourier transform of ϕ. As usual, F−1ϕ or ϕ∨, stands for the inverse
Fourier transform, given by the right-hand side of (1.5) with i in place of −i.
Here xξ denotes the scalar product in Rn. Both F and F−1 are extended to
S ′(Rn) in the standard way. Let ϕ ∈ S(Rn) be such that

ϕ(x) = 1 if |x|a ≤ 1 and supp ϕ ⊂ {x ∈ Rn : |x|a ≤ 2}, (1.6)

and for each j ∈ N let

ϕa
j (x) := ϕ(2−jax)− ϕ(2(−j+1)ax), x ∈ Rn. (1.7)

Then the sequence (ϕa
j )
∞
j=0 , with ϕ0 = ϕ, forms a smooth anisotropic dyadic

resolution of unity, cf. [37, Sect. 4.2]. Let f ∈ S ′(Rn), then the compact

support of ϕa
j f̂ implies by the Paley - Wiener - Schwartz theorem that (ϕa

j f̂)∨

is an entire analytic function on Rn.

Definition 1.3.1 Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, a = (a1, . . . , an) an
anisotropy, and (ϕa

j )
∞
j=0 a smooth anisotropic dyadic resolution of unity. Then

Bs,a
pq (Rn) is the collection of all f ∈ S ′(Rn) for which the quasi-norm

‖f | Bs,a
pq (Rn)‖ =

( ∞∑
j=0

2jsq‖(ϕa
j f̂)∨|Lp(Rn)‖q

)1/q

(1.8)

(with the usual modification if q = ∞) is finite.

Remark 1.3.2 Sometimes the following notation is used B s̄
pq(Rn). Given a

space Bs,a
pq (Rn) then s̄ is calculated by s̄ =

(
s
a1

, . . . , s
am

)
.

Note that there is a parallel definition for spaces of type F s,a
pq (Rn), 0 < p < ∞,

0 < q ≤ ∞, s ∈ R, a = (a1, . . . , an) an anisotropy, when interchanging the
order of `q- and Lp- quasi-norms in (1.8). It is obvious, that the quasi-norm
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(1.8) depends on the chosen system (ϕa
j )j∈N0 , but not the space Bs,a

pq (Rn) (in
the sense of equivalent quasi-norms); therefore we omit in our notation the
subscript ϕ in the sequel. It is well-known that Bs,a

pq (Rn) are quasi-Banach
spaces (Banach spaces if p ≥ 1 and q ≥ 1), and, as in the isotropic case,
S(Rn) ↪→ Bs,a

pq (Rn) ↪→ S ′(Rn) for all admissible values of p, q, s, see [45, Sect.
2.3.3]. If s ∈ R and 0 < p < ∞, 0 < q < ∞ then S(Rn) is dense in Bs,a

pq (Rn) , see
[57, Sect. 3.5] and [10, Sect. 1.2.10]. Note that we indicated the only (formal)
difference to the isotropic counterparts of (1.8) by the additional superscript at
the smooth anisotropic dyadic resolution of unity (ϕa

j )
∞
j=0.

We want to point out that if 0 < p < ∞ and s ∈ R then

Bs,a
pp (Rn) = F s,a

pp (Rn). (1.9)

If 1 < p < ∞ and s ∈ R then (in the sense of equivalent quasi-norms)

F s,a
p2 (Rn) = Hs,a

p (Rn) (1.10)

where

Hs,a
p (Rn) =

{
f ∈ S ′(Rn) :

∥∥∥∥
( n∑

k=1

(1 + ξ2
k)

s/(2ak)f̂

)∨
|Lp(Rn)

∥∥∥∥ < ∞
}

(1.11)

is the anisotropic Bessel potential spaces (see [43, Remark 11], [44, Sect. 2.5.2]
and [57, Sect. 3.11]).
Furthermore, if 1 < p < ∞, s > 0 and if s1 = s/a1 ∈ N, . . . , sn = s/an ∈ N
then (in the sense of equivalent quasi-norms)

F s,a
p2 (Rn) = W s,a

p (Rn) (1.12)

where

W s,a
p (Rn) =

{
f ∈ S ′(Rn) : ‖f |Lp(Rn)‖+

n∑

k=1

∥∥∥∥
∂skf

∂xsk
k

|Lp(Rn)

∥∥∥∥ < ∞
}

(1.13)

is the classical anisotropic Sobolev spaces on Rn. As a consequence of (1.9),
(1.10) and (1.12) we have

Bs,a
22 (Rn) = F s,a

22 (Rn) = Hs,a
2 (Rn) = W s,a

2 (Rn), (1.14)

for s > 0 and si = s/ai ∈ N, i = 1, . . . , n.
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Remark 1.3.3 A systematic treatment of the theory of (isotropic) Bs
pq(Rn)

(and F s
pq(Rn)) spaces may be found in the monographs [45], [47], [49] and [50];

see also [11] and [36]. A survey on the basic results for the (anisotropic) spaces
Bs,a

pq (Rn) (and F s,a
pq (Rn)) is given in [37, Sect. 4.2.1-4.2.4] and [26, Sect. 2.1-

2.2]. In addition to the literature mentioned in our introduction we essentially
rely on [17] and [18] in the sequel.

For convenience, in case of p = q we shall stick to the notation

Bs,a
p (Rn) = Bs,a

pp (Rn) where 0 < p ≤ ∞, s ∈ R, (1.15)

in the sequel.





2 Properties of anisotropic Besov
spaces

The aim of chapter 2 is to prove some new and important properties of anisotropic
Besov spaces, which we need later one, and thus to complement results in
[7, 17, 37].

2.1 Equivalent norms

We begin this section with the anisotropic counterpart of Proposition 1 in [54].

Proposition 2.1.1 Let 0 < p ≤ ∞, s ∈ R, a = (a1, . . . , an) an anisotropy,
and (ϕa

j )
∞
j=0 a smooth anisotropic dyadic resolution of unity. Then for each

f ∈ Bs,a
p (Rn),

( ∞∑
j=0

∑

m∈Zn

2j(s−n/p)p|(ϕa
j f̂)∨(2−jam)|p

)1/p

∼ ‖f |Bs,a
p (Rn)‖ (2.1)

(with the usual modification if p = ∞) where the equivalence constants are
independent of s and f .

P r o o f. We want to show that

( ∞∑
j=0

∑

m∈Zn

2j(s−n/p)p|(ϕa
j f̂)∨(2−jam)|p

)1/p

∼ ‖f |Bs,a
p (Rn)‖. (2.2)

Taking into account the definition (1.8),

‖f |Bs,a
p (Rn)‖ =

( ∞∑
j=0

2jsp‖(ϕa
j f̂)∨|Lp(Rn)‖p

)1/p

, (2.3)

the assertion reduces to

∑

m∈Zn

|(ϕa
j f̂)∨(2−jam)|p ∼ 2jn

∥∥∥(ϕa
j f̂)∨|Lp(Rn)

∥∥∥
p

(2.4)

19



20 Properties of anisotropic Besov spaces

with equivalence constants independent of j ∈ N0 and f ∈ S ′(Rn). Here we
use an isotropic result given in [45, Sect. 1.3.3] : adapted to our above notation
it states that for 0 < p ≤ ∞ there exist some numbers ν0 > 0 and c2 > c1 > 0
such that for all ν ≥ ν0, and all ϕ ∈ S(Rn) with supp Fϕ ⊂ Ω it holds

c1

∑

m∈Zn

∣∣ϕ (
2−νm

)∣∣p ≤ 2νn ‖ϕ|Lp(Rn)‖p ≤ c2

∑

m∈Zn

∣∣ϕ (
2−νm

)∣∣p (2.5)

(modification if p = ∞), where Ω ⊂ Rn is compact. In addition, it is known,
cf. [45, Rem. 1.3.3] or [44, Sect. 1.3.5], that if for some suitably chosen y0 ∈ Rn

and b > 0,
Ω ⊂ {

y ∈ Rn : |yj − y0
j | ≤ b, j = 1, . . . , n

}
, (2.6)

then ν0 can be taken such that 2ν0 ∼ b. Thus, with ϕ = (ϕj f̂)∨ this implies

b ∼ 2j in the isotropic case, i.e. (2.5) with ϕ = (ϕj f̂)∨ and ν = j yields the
desired (isotropic) result. In order to prove (2.4) we simply modify the above
argument slightly : let ψ ∈ S(Rn) with

supp Fψ ⊂ Ωa ⊂ {
y ∈ Rn : |yj − y1

j | ≤ baj , j = 1, . . . , n
}

,

for suitably chosen y1 ∈ Rn and b > 0, then we define

ϕ(tx) := ψ (tax) , t > 0, x ∈ Rn. (2.7)

Obviously, ϕ ∈ S(Rn), Fϕ(tξ) = Fψ (taξ), t > 0, ξ ∈ Rn, and consequently

supp Fϕ ⊂ {
y ∈ Rn : |yj − y0

j | ≤ b, j = 1, . . . , n
}

(with y0 = b1−ay1). Hence application of (2.5) and (2.7) leads to

c1

∑

m∈Zn

∣∣ψ (
2−νam

)∣∣p ≤ 2νn ‖ϕ|Lp(Rn)‖p ≤ c2

∑

m∈Zn

∣∣ψ (
2−νam

)∣∣p . (2.8)

On the other hand, with a1 + · · ·+ an = n,

‖ϕ|Lp(Rn)‖p =

∫

Rn

|ϕ(x)|p dx = tn
∫

Rn

|ϕ(ty)|p dy

= tn
∫

Rn

|ψ(tay)|p dy =

∫

Rn

|ψ(z)|p dz

= ‖ψ|Lp(Rn)‖p . (2.9)

Finally, (2.8) and (2.9) with ψ = (ϕa
j f̂)∨, b ∼ 2j and ν = j finish the proof. 2
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Next, we present some important equivalent quasi-norms in Bs,a
pq . The theorem

below is the anisotropic counterpart of Theorem 2.3.3 of [47, p.98].

Let ϕ ∈ S(Rn) as in Section 1.3, in particular we have (1.6). We extend the
definition of ϕa

j from (1.7) to all integers j. It should be noted that ϕa
0 has now

a different meaning as in 1.3, i.e. for f ∈ S ′(Rn) then we have that

f = (ϕf̂)∨ +
∞∑

j=1

(ϕa
j f̂)∨ (convergence in S ′(Rn)). (2.10)

Let a+ = max(0, a) where a ∈ R and

σp = n
(1

p
− 1

)
+
, 0 < p ≤ ∞. (2.11)

Theorem 2.1.2 Let 0 < p ≤ ∞, 0 < q ≤ ∞, s > σp and a = (a1, . . . , an) an
anisotropy, then

‖(ϕf̂)∨|Lp(Rn)‖+

( ∞∑
j=−∞

2jsq‖(ϕa
j f̂)∨|Lp(Rn)‖q

)1/q

(2.12)

and

‖f |Lp(Rn)‖+

( ∞∑
j=−∞

2jsq‖(ϕa
j f̂)∨|Lp(Rn)‖q

)1/q

(2.13)

(modification if q = ∞) are equivalent quasi-norms in Bs,a
pq (Rn).

P r o o f. We closely follow the proof in [47, Sect. 2.3.3] for the isotropic case.
Step 1. We prove that (2.12) is an equivalent quasi-norm in Bs,a

pq (Rn). It is
sufficient to show that there exists a constant c > 0 such that

‖(ϕa
j f̂)∨|Lp(Rn)‖ ≤ c2−jσp‖(ϕf̂)∨|Lp(Rn)‖, −j ∈ N, (2.14)

holds, because we need to prove that

( −1∑
j=−∞

2jsq‖(ϕa
j f̂)∨|Lp(Rn)‖q

)1/q

≤ c‖(ϕf̂)∨|Lp(Rn)‖

and this is satisfied if (2.14) is true. For those j’s we have that ϕa
j (x) =

ϕa
j (x)ϕ(x) by the support condition (1.6) and (1.7) with −j ∈ N, and hence

‖(ϕa
j f̂)∨|Lp(Rn)‖ = ‖(ϕa

j ((ϕf̂)∨)∧)∨|Lp(Rn)‖
≤ c‖ϕ̌a

j |Lr(Rn)‖‖(ϕf̂)∨|Lp(Rn)‖, r =min(1, p),(2.15)
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where the inequality comes from the Fourier multiplier assertion for entire
analytic functions, ‖F−1MFf |Lp(Rn)‖ ≤ ‖F−1M |Lp̃(Rn)‖‖f |Lp(Rn)‖ where
p̃ = min(1, p), proved in [45, Proposition 1.5.1]. Elementary calculations show
that ϕ̌a

j (x) = 2jnϕ̌0(2
jax) such that ‖ϕ̌a

j |Lr(Rn)‖ = 2−j n
r ‖ϕ̌0(2

ja·)|Lr(Rn)‖ ≤
c2−j n

r
+jn as a1 + · · ·+ an = n. By (2.15) we thus have that

‖(ϕa
j f̂)∨|Lp(Rn)‖ ≤ 2−jn( 1

r
−1)‖(ϕf̂)∨|Lp(Rn)‖

and we obtain (2.14) since σp = n
(

1
r
− 1

)
.

Step 2. We prove that (2.13) is an equivalent quasi-norm in Bs,a
pq (Rn). By our

assumption s > σp, we may assume that (2.10) converges not only in S ′(Rn),
but also, say almost everywhere in Rn. Then we have

‖f |Lp(Rn)‖ ≤ c‖(ϕf̂)∨|Lp(Rn)‖+ c

( ∞∑
j=1

‖(ϕa
j f̂)∨|Lp(Rn)‖p

)1/p

(2.16)

if 0 < p ≤ 1 and a corresponding estimate if 1 < p < ∞. Now (2.12) and (2.16)
prove that (2.13) can be estimated from above by c‖f |Bs,a

pq (Rn)‖. We consider
the converse inequality. Because f is a regular distribution we have a.e. that

(ϕf̂)∨(x) = f(x)+((1−ϕ(·))f̂)∨(x) = f(x)+
∞∑

j=0

((1−ϕ(·))ϕa
j (·)f̂)∨(x). (2.17)

By the above-mentioned Fourier multiplier assertion we have

‖ (ϕf̂)∨|Lp(Rn)‖ ≤ c‖f |Lp(Rn)‖+ c

( ∞∑
j=0

‖(ϕa
j f̂)∨|Lp(Rn)‖p

)1/p

(2.18)

if 0 < p ≤ 1 and a corresponding estimate if 1 < p < ∞. Now (2.12) and
(2.18) prove that ‖f |Bs,a

pq (Rn)‖ can be estimated from above by the quasi-norm
(2.13). 2

Remark 2.1.3 The quasi-norms of type (2.12), (2.13) have a continuous coun-
terpart. We introduce ρa(tξ) = ϕ(taξ)−ϕ((2t)aξ) where t > 0. Then the coun-
terpart of (2.12) reads as follows:
Let 0 < p ≤ ∞, 0 < q ≤ ∞, s > σp and a an anisotropy, then

‖f |Lp(Rn)‖+

( ∫ ∞

0

t−sq‖(ρa(t·)f̂)∨|Lp(Rn)‖q dt

t

)1/q

(2.19)

(modification if q = ∞) is an equivalent quasi-norm in Bs,a
pq (Rn).
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2.2 Homogeneity estimate

In following we extend the well-known homogeneity estimate for Bs
pq(Rn)

‖f(R·)|Bs
pq(Rn)‖ ≤ cRs−n

p ‖f |Bs
pq(Rn)‖ for all f ∈ Bs

pq(Rn),

if R ≥ 1, see [45, Prop. 3.4.1], to anisotropic spaces.

Proposition 2.2.1 Let 0 < p ≤ ∞, 0 < q ≤ ∞, s > σp and a = (a1, . . . , an)
an anisotropy. There exists a constant c > 0 such that for all R ≥ 1,

‖f(R·)|Bs,a
pq (Rn)‖ ≤ cRs−n

p ‖f |Bs,a
pq (Rn)‖ for all f ∈ Bs,a

pq (Rn). (2.20)

P r o o f. We closely follow the proof in [11, Prop. 2.3.1] for the isotropic
case. Let ψ = ϕ1 be the same function as in (1.7). We have by (2.19)

‖f |Lp(Rn)‖+

( ∫ ∞

0

t−sq‖(ψ(t·)f̂)∨|Lp(Rn)‖q dt

t

)1/q

(2.21)

is an equivalent quasi-norm on Bs,a
pq (Rn). Elementary calculation shows that

(ψ(t·)f(R·)∧(·))∨(x) = (ψ(t·)f̂(R−1·))∨(x)R−n

= (ψ(t(R·))f̂(·))∨(Rx). (2.22)

also in the anisotropic case, where a1 + · · ·+ an = n. From (2.21), with f(Rx)
in place of f(x), and (2.22) we obtain

‖f(R·)|Bs,a
pq (Rn)‖

≤ c1‖f(R·)|Lp(Rn)‖+ c1

( ∫ ∞

0

t−sq‖F−1(ψ(t·)F [f(R·)])|Lp(Rn)‖q dt

t

)1/q

≤ c2R
−n

p ‖f |Lp(Rn)‖+ c3R
s−n

p

( ∫ ∞

0

t−sq‖F−1(ψ(t(R·))Ff)|Lp(Rn)‖q dt

t

)1/q

and from here follows (2.20) for R ≥ 1, c1, c2, c3 > 0 and s > σp. 2

2.3 Localisation

The main goal in this section is to extend the localisation property, see [11,
Sect. 2.3.2], to anisotropic spaces. First we recall the isotropic case, that we
will use in our proof below. Let xj,k = 2−jk with k ∈ Zn and j ∈ N. Let
f ∈ S ′(Rn) with supp f ⊂ Qb, where

Qb = {x ∈ Rn : x = (x1, x2, . . . , xn), |xl| < b if l = 1, . . . , n} (2.23)
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where b > 0 and b ≤ 1
2
. Let

f j(x) =
∑

k∈Zn

ckf(2j+1(x− xj,k)), ck ∈ C, j ∈ N. (2.24)

If s > σp, 0 < p ≤ ∞, 0 < d ≤ 1/4 then there exist two constants c1, c2 > 0
such that for all f ∈ Bs

pp(Rn)

c1‖f j|Bs
pp(Rn)‖ ≤ 2j(s−n

p
)
( ∑

k∈Zn

|ck|p
)1/p‖f |Bs

pp(Rn)‖ ≤ c2‖f j|Bs
pp(Rn)‖.

(2.25)

Now we can extend the property to anisotropic case. Let Zn be the lattice of all
points in Rn having integer valued components. Let xa

j,k = 2−jak with k ∈ Zn

and j ∈ N. Let f ∈ S ′(Rn) with

supp f ⊂ Qa
b = {x ∈ Rn : x = (x1, x2, . . . , xn), |x|a < b} (2.26)

where b > 0 and b ≤ 1
4
(2amin + 1). Let

fa
j (x) =

∑

k∈Zn

ckf(2(j+1)a(x− xa
j,k)), ck ∈ C, j ∈ N (2.27)

where f is a product of one-dimensional functions,

f(2(j+1)a(x− xa
j,k)) =

n∏
m=1

fm(2(j+1)am(xm − 2−jamkm)) (2.28)

and f1(y) = · · · = fn(y) where y ∈ R.

Theorem 2.3.1 Let s > σp, 0 < p ≤ ∞, a = (a1, . . . , an) an anisotropy and
0 < b ≤ 1

4
(2amin + 1). There exist two constants c′ > 0 and c′′ > 0 such that for

all f ∈ Bs,a
p (Rn) with supp f ⊂ Qa

b and all j ∈ N and all fa
j given by (2.27)

c′‖fa
j |Bs,a

p (Rn)‖ ≤ 2j(s−n
p
)
( ∑

k∈Zn

|ck|p
)1/p‖f |Bs,a

p (Rn)‖ ≤ c′′‖fa
j |Bs,a

p (Rn)‖.

(2.29)

P r o o f. Step 1. At first we prove the left-hand side of (2.29). By (2.27) we
have

fa
j (2−(j+1)ax) =

∑

k∈Zn

ckf(x− 2ak), ck ∈ C, j ∈ N, (2.30)
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where f ∈ Bs,a
p (Rn) and (2.26) is true. We would like to show that

∥∥∥∥
∑

k∈Zn

ckf(· − 2ak)|Bs,a
p (Rn)

∥∥∥∥ ∼
( ∑

k∈Zn

|ck|p
)1/p

‖f |Bs,a
p (Rn)‖. (2.31)

We use the characterization of Bs,a
p (Rn) via local means; see [17, Sect. 4.4].

Recall notation (1.2). Let k ∈ C∞ so that supp k ⊂ Ba = {y ∈ Rn : |y|a ≤ 1}
and

k(t, f)(x) =

∫

Rn

k(y)f(x + tay)dy, t > 0. (2.32)

Let k0 ∈ C∞ such that supp k0 ⊂ Ba, and s1 > max(s, σp) + σp then

‖f |Bs,a
p (Rn)‖ ∼ ‖k0(1, f)|Lp(Rn)‖+

( ∞∑
j=1

2jsp‖k(2−j, f)|Lp(Rn)‖p

)1/p

, (2.33)

see [17, Sect. 4.4]. We insert (2.30) in (2.32) and obtain

k

(
t,

∑

m∈Zn

cmf(· − 2am)

)
(x) =

∫

Rn

k(y)

( ∑

m∈Zn

cmf(x + tay − 2am)

)
dy

=
∑

m∈Zn

cm

∫

Rn

k(y)f(x− 2am + tay)dy

=
∑

m∈Zn

cmk(t, f)(x− 2am) (2.34)

and it follows

‖
∑

m∈Zn

cmf(· − 2am)|Bs,a
p (Rn)‖ ∼ ‖k0(1,

∑

m∈Zn

cmf(· − 2am))|Lp(Rn)‖+

+
( ∞∑

j=1

2jsp‖k(2−j,
∑

m∈Zn

cmf(· − 2am))|Lp(Rn)‖p
) 1

p

∼
( ∑

m∈Zn

|cm|p
)1/p(

‖k0(1, f)|Lp(Rn)‖+
( ∞∑

j=1

2jsp‖k(2−j, f)|Lp(Rn)‖p
) 1

p

)

∼
( ∑

m∈Zn

|cm|p
)1/p

‖f |Bs,a
p (Rn)‖.

Now the left-hand side of inequality of (2.29) is an easy consequence of Propo-
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sition 2.2.1, (2.30) and (2.31):

‖fa
j |Bs,a

p (Rn)‖ ≤ c2j(s−n/p)

∥∥∥∥
∑

m∈Zn

cmf(· − 2am)|Bs,a
p (Rn)

∥∥∥∥

≤ c′2j(s−n/p)

( ∑

m∈Zn

|cm|p
)1/p

‖f |Bs,a
p (Rn)‖. (2.35)

Step 2. In this step we prove the right-hand side of (2.29). For this we would
like to use the localisation property given in [11, Sect. 2.3.2] if n = 1 and for
the functions

f jα(x) =
∑

m∈Z
cmf(2(j+1)αx− 2αm), cm ∈ C, j, α ∈ N, x ∈ R , (2.36)

where f ∈ S ′(R). By [11, Sect. 2.3.2/4] we know that there exist two constants
c′ > 0 and c′′ > 0 such that for all f ∈ Bs

pp(R)

c′‖f jα|Bs
pp(R)‖ ≤ 2jα(s− 1

p
)
( ∑

k∈Z
|ck|p

)1/p‖f |Bs
pp(R)‖ ≤ c′′‖f jα|Bs

pp(R)‖, (2.37)

as for n = 1 isotropic and anisotropic results coincide. For the functions fa
j

given in (2.27) we use the Fubini property of Bs,a
p (Rn), where we use the nota-

tion like in remark 1.3.2; see [7, Sect. 6.], i.e.

‖fa
j |Bs,a

p (Rn)‖ ∼

∼
n∑

m=1

∥∥∥ ‖fa
j (x1, . . . , xm−1, ·, xm+1, . . . , xn)|Bsm

p (R)‖xm|Lp(Rn−1)
∥∥∥

x′
,(2.38)

where x′ = (x1, . . . , xm−1, xm+1, . . . , xn) and sm = s
am

. By (2.27) and (2.28)

‖fa
j (x1, . . . , xm−1, ·, xm+1, . . . , xn)|Bsm

p (R)‖xm =

=
∥∥∥

∞∑

km=−∞
fm(2(j+1)amxm − 2amkm)

[ ∑

k̄∈Zn−1

c(k1,...,kn)f̄
]
|Bsm

p (R)
∥∥∥

xm

,(2.39)

where k̄ = (k1, . . . , km−1, km+1, . . . , kn) and

f̄ = f1(2
(j+1)a1x1 − 2a1k1) · · · fm−1(2

(j+1)am−1xm−1 − 2am−1km−1)×
×fm+1(2

(j+1)am+1xm+1 − 2am+1km+1) · · · fn(2(j+1)anx1 − 2ankn).(2.40)
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Let dkm =

( ∑

l∈Zn

lm=km

|cl|p
)1/p

and without restriction of generality we may assume

that dkm > 0; we have that

‖fa
j (x1, . . . , xm−1, ·, xm+1, . . . , xn)|Bsm

p (R)‖xm =

=
∥∥∥

∞∑

km=−∞
fm(2(j+1)amxm − 2amkm)

[ ∑

k̄∈Zn−1

dkm

c(k1,...,kn)

dkm

f̄
]
|Bsm

p (R)
∥∥∥

xm

.(2.41)

Let c̄k =
c(k1,...,kn)

dkm
and by (2.41) we get that

‖fa
j (x1, . . . , xm−1, ·, xm+1, . . . , xn)|Bsm

p (R)‖xm =

=
∥∥∥

∞∑

km=−∞
dkmfm(2(j+1)amxm − 2amkm)

[ ∑

k̄∈Zn−1

c̄kf̄
]
|Bsm

p (R)
∥∥∥

xm

=
[ ∑

k̄∈Zn−1

c̄kf̄
]∥∥∥

∞∑

km=−∞
dkmfm(2(j+1)amxm − 2amkm)|Bsm

p (R)
∥∥∥

xm

. (2.42)

By (2.42),

∥∥∥‖fa
j (x1, . . . , xm−1, ·, xm+1, . . . , xn)|Bsm

p (R)‖xm |Lp(Rn−1)
∥∥∥

x′
=

=

∥∥∥∥∥
[ ∑

k̄∈Zn−1

c̄kf̄
] ∥∥∥

∞∑

km=−∞
dkmfm(2(j+1)amxm − 2amkm)|Bsm

p (R)
∥∥∥

xm

|Lp(Rn−1)

∥∥∥∥∥
x′

=
∥∥∥

∞∑

km=−∞
dkmfm(2(j+1)amxm − 2amkm)|Bsm

p (R)
∥∥∥

xm

×

×
∥∥∥

∑

k̄∈Zn−1

c̄kf̄ |Lp(Rn−1)
∥∥∥

x′
. (2.43)

Note that

∥∥∥
∑

k̄∈Zn−1

c̄kf̄ |Lp(Rn−1)
∥∥∥

x′
=

( ∑

k̄∈Zn−1

|c̄k|p
)1/p

2(j+1)(am−n)/p ×

× ‖f1 · · · fm−1fm+1 · · · fn|Lp(Rn−1)‖x′ ,(2.44)

recall −(a1 + · · · + am−1 + am+1 + · · · + an) = am − n. Now we use (2.37) for
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the spaces Bsm
p (R) and by (2.43), (2.44)

∥∥∥‖fa
j (x1, . . . , xm−1, ·, xm+1, . . . , xn)|Bsm

p (R)‖xm |Lp(Rn−1)
∥∥∥

x′
≥

≥ c′2jam(sm− 1
p
)

( ∞∑

km=−∞
|dkm|p

)1/p

‖fm|Bsm
p (R)‖xm ×

× 2
j
p
(am−n)

( ∑

k̄∈Zn−1

|c̄k|p
) 1

p

‖f1 · · · fm−1 · fm+1 · · · fn|Lp(Rn−1)‖x′ .(2.45)

On the other hand,

( ∞∑

km=−∞
|dkm|p

)1/p

=

( ∞∑

km=−∞

∑

l∈Zn

lm=km

|cl|p
)1/p

=

( ∞∑

l∈Zn

|cl|p
)1/p

(2.46)

and

( ∑

k̄∈Zn−1

|c̄k|p
)1/p

=

( ∑

k̄∈Zn−1

|c(k1,...,kn)|p
dp

km

)1/p

=
1

dkm

( ∑

k̄∈Zn−1

|c(k1,...,kn)|p
)1/p

︸ ︷︷ ︸
≥ dkm

≥ 1. (2.47)

By (2.45), (2.46) and (2.47) and sm · am = s, we conclude

∥∥∥‖fa
j (x1, . . . , xm−1, ·, xm+1, . . . , xn)|Bsm

p (R)‖xm |Lp(Rn−1)
∥∥∥

x′
≥

≥ c′2j(s−n
p
)

( ∑

k∈Zn

|ck|p
)1/p

‖fm|Bsm
p (R)‖xm ×

×‖f1 · · · fm−1 · fm+1 · · · fn|Lp(Rn−1)‖x′

≥ c′2j(s−n
p
)

( ∑

k∈Zn

|ck|p
)1/p∥∥∥‖f1 · · · fn|Bsm

p (R)‖xm|Lp(Rn−1)
∥∥∥

x′
. (2.48)

By (2.48) and the Fubini property (2.38) we obtain the right-hand side of
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inequality of (2.29)

‖fa
j |Bs,a

p (Rn)‖ ≥ c2j(s−n
p
)

( ∑

k∈Zn

|ck|p
)1/p n∑

m=1

∥∥∥‖f1 · · · fn|Bsm
p (R)‖xm |Lp(Rn−1)

∥∥∥
x′

≥ c′2j(s−n
p
)

( ∑

k∈Zn

|ck|p
)1/p

‖f |Bs,a
p (Rn)‖. (2.49)

2





3 Decompositions in anisotropic
Besov spaces

Many procedures were established to reduce problems in function spaces to
the level of sequence spaces with the help of decomposition techniques. There
are many different possible ways to do so, for example by using molecules,
atoms, quarks and wavelets. In this chapter we give sub-atomic and wavelet
representations of anisotropic Besov spaces. The arguments stressed there are
essentially based on (known) corresponding atomic decomposition. Thus we
recall some basic facts about anisotropic atoms and atomic decomposition in
section 3.1 and in section 3.2 we formulate our main results.

3.1 Anisotropic atoms and the atomic
decomposition theorem

Let a = (a1, . . . , an) an anisotropy, ν ∈ N0, and m = (m1, . . . , mn) ∈ Zn, then
we denote by Qa

νm the rectangle in Rn centered at 2−νam = (2−νa1m1 , . . .
. . . , 2−νanmn) which has sides parallel to axes and side lengths respectively
2−νa1 , . . . , 2−νan . Note that Qa

0m is a cube with side length 1. If Qa
νm is such

a rectangle in Rn and c > 0 then cQa
νm is the rectangle in Rn concentric with

Qa
νm and with side lengths respectively c2−νa1 , . . . , c2−νan .

Definition 3.1.1

(i) Let K ∈ R, c > 1. A function % : Rn → C for which there exist all deriva-
tives Dγ% if aγ ≤ K (continuous if K ≤ 0), is called an anisotropic
1K−atom if

supp % ⊂ cQa
0m for some m ∈ Zn, (3.1)

|Dγ%(x)| ≤ 1 if aγ ≤ K, γ ∈ Nn
0 , x ∈ Rn. (3.2)

(ii) Let s ∈ R, 0 < p ≤ ∞, K, L ∈ R. A function % : Rn → C for which there
exist all derivatives Dγ% if aγ ≤ K (continuous if K ≤ 0) is called an
anisotropic (s, p)K,L−atom if

supp % ⊂ cQa
νm for some ν ∈ N, m ∈ Zn, (3.3)

31
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|Dγ%(x)| ≤ 2−ν(s−n
p
)+νaγ if aγ ≤ K, γ ∈ Nn

0 , x ∈ Rn, (3.4)∫

Rn

xβ%(x) dx = 0 if aβ ≤ L, β ∈ Nn
0 . (3.5)

If the atom % is located at Qa
νm (that means supp % ⊂ cQa

νm with ν ∈ N0 ,
m ∈ Zn, c > 1) then we shall denote it by %a

νm.

Remark 3.1.2 The value of the number c > 1 in (3.1) and (3.3) is unimpor-
tant; it only indicates that at level ν some controlled overlapping of the supports
of %a

νm has to be allowed. The moment conditions (3.5) can be reformulated as

Dβ%̂(0) = 0 if aβ ≤ L,

which shows that a sufficiently strong decay of %̂ at the origin is required. If
L < 0 then (3.5) should be interpreted in the sense that there are no moment
conditions. The normalising factors in (3.2), (3.4) imply that there exists a
constant c > 0 such that for all these atoms we have ‖% |Bs,a

pq (Rn)‖ ≤ c, see
Theorem 3.1.4 below. Hence, as in the isotropic case, atoms are normalised
building blocks satisfying some moment conditions.

This construction generalises isotropic atoms leading back to [19], [20] and the
survey [21]. It is also slightly related to the concept of anisotropic building
blocks (compactly supported and satisfying some norming and some moment
conditions) used in [41] to define anisotropic Hardy spaces and to study the re-
lation of these spaces to anisotropic Lipschitz and Campanato - Morrey spaces.
As already mentioned, we use the presentation from [17], which itself was mo-
tivated by the isotropic counterparts in [47], [49].

Suitable anisotropic sequence spaces can be introduced as follows.

Definition 3.1.3 Let 0 < p ≤ ∞, 0 < q ≤ ∞, and a = (a1, . . . , an) an
anisotropy. Then bpq is the collection of all sequences λ = {λνm ∈ C : ν ∈
N0, m ∈ Zn} such that

‖λ|bpq‖ =

( ∞∑
ν=0

( ∑

m∈Zn

|λνm|p
)q/p)1/q

(3.6)

(with the usual modification if p = ∞ and/or q = ∞) is finite.

Again, note that there is a counterpart for spaces of type F s,a
pq (Rn); the cor-

responding sequence spaces fa
pq can be introduced similarly, but will not be

used in the sequel. One can easily check that bpq are quasi-Banach spaces. For
0 < p ≤ ∞ let σp given by (2.11).
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Theorem 3.1.4 [17, Thm.3.3] Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and let
K, L ∈ R be such that

K ≥ amax + s if s ≥ 0, (3.7)

L ≥ σp − s. (3.8)

Then g ∈ S ′(Rn) belongs to Bs,a
pq (Rn) if, and only if, it can be represented as

g =
∞∑

ν=0

∑

m∈Zn

λνm%a
νm, (3.9)

convergence being in S ′(Rn), where %a
νm are anisotropic 1K − atoms (ν = 0)

or anisotropic (s, p)K,L − atoms (ν ∈ N) and λ ∈ bpq with λ = {λνm : ν ∈
N0, m ∈ Zn}. Furthermore,

inf ‖λ|bpq‖
where the infimum is taken over all admissible representations (3.9), is an equiv-
alent quasi-norm in Bs,a

pq (Rn).

Remark 3.1.5 A proof of this theorem – and its counterpart for spaces F s,a
pq (Rn)

– is given in [17, Sect. 5.1]. The convergence in S ′(Rn) can be obtained as a
by-product of the proof using the same method as for its isotropic counterpart
in [49, Sect. 13.9]. As already mentioned it generalises atomic decomposition
results in [19], [20], [49], to anisotropic function spaces.

3.2 Decompositions and wavelets

Our main object is to study the anisotropic counterpart of results from [52];
hence we closely follow this presentation, adapting it to our context when nec-
essary, but keeping similar notation if possible. Let

Rn
++ = {y ∈ Rn : y = (y1, . . . , yn), yj > 0 for all j} (3.10)

and let k be a non-negative C∞ function in Rn with

supp k ⊂ {y ∈ Rn : |y|a < 2J} ∩ Rn
++, (3.11)

for some J ∈ N, and ∑

m∈Zn

k(x−m) = 1, x ∈ Rn. (3.12)

Recall xβ = xβ1

1 · · · xβn
n where x = (x1, . . . , xn) ∈ Rn and β ∈ Nn

0 , and put

kβ(x) = (2−Jax)βk(x) ≥ 0, x ∈ Rn, β ∈ Nn
0 . (3.13)
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Let

λ = {λβ
jm ∈ C : j ∈ N0, m ∈ Zn, β ∈ Nn

0}. (3.14)

For s ∈ R, 0 < p ≤ ∞, and % ≥ 0, we introduce bs,%
p by

‖λ|bs,%
p ‖ =

( ∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

2%aβp+j(s−n/p)p|λβ
jm|p

)1/p

. (3.15)

Let

ω ∈ S, supp ω ⊂ (−π, π)n, ω(x) = 1 if |x|a ≤ 2, (3.16)

and let

ωβ(x) =
i|β|2Jaβ

(2π)nβ!
xβω(x) for x ∈ Rn, β ∈ Nn

0 , (3.17)

recall (1.1). Let

Ωβ(x) =
∑

m∈Zn

(ωβ)∨(m)e−imx, x ∈ Rn, β ∈ Nn
0 . (3.18)

Definition 3.2.1 Let ϕ0 be a C∞ function in Rn with

ϕ0(x) = 1 if |x|a ≤ 1 and ϕ0(x) = 0 if |x|a ≥ 3

2
, (3.19)

and let ϕ(x) = ϕ0(x)−ϕ0(2
ax) and β ∈ Nn

0 . The father wavelets Φβ
F (x) and

the mother wavelets Φβ
M(x) are given by

(
Φβ

F

)∨
(ξ) = ϕ0(ξ)Ω

β(ξ), ξ ∈ Rn, (3.20)

(
Φβ

M

)∨
(ξ) = ϕ(ξ)Ωβ(ξ), ξ ∈ Rn. (3.21)

Remark 3.2.2 Our assumption ωβ ∈ S(Rn) implies that
(
Φβ

F

)∨
,
(
Φβ

M

)∨
, and

hence also Φβ
F , Φβ

M are elements of S(Rn). Furthermore, Φβ
F and Φβ

M are entire
analytic functions with vanishing moments of arbitrary order for Φβ

M , because
(3.19) implies supp ϕ ⊂ {x ∈ Rn : 1

2
≤ |x|a ≤ 3

2
}, and thus (3.21) yields

Dα
(
Φβ

M

)∨
(0) = 0, α ∈ Nn

0 , which can be reformulated as

∫

Rn

Φβ
M(ξ)ξα dξ = 0, α ∈ Nn

0 . (3.22)
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By construction we have

Φβ
F (x) =

∑

m∈Zn

(ωβ)∨(m)ϕ̂0(x + m), x ∈ Rn, (3.23)

Φβ
M(x) =

∑

m∈Zn

(ωβ)∨(m)ϕ̂(x + m), x ∈ Rn. (3.24)

For fundamentals about wavelets we refer, for instance, to [32] and [56].

Let Φβ
F and Φβ

M , β ∈ Nn
0 , be given by Definition 3.2.1, and introduce for j ∈ N0,

m ∈ Zn, the wavelets

Φβ
jm(x) =

{
Φβ

F (x−m), if j = 0,

Φβ
M(2jax−m), if j ∈ N.

(3.25)

According to the dual pairing (S(Rn),S ′(Rn)) we put, for given f ∈ S ′(Rn),

λβ
jm(f) = 2jn(Φβ

jm, f), j ∈ N0, m ∈ Zn, β ∈ Nn
0 . (3.26)

Finally, let

B+,a
p (Rn) =

⋃
s>0

Bs,a
p (Rn), 0 < p ≤ ∞.

Recall our notation (2.11).

Theorem 3.2.3 Let 0 < p ≤ ∞, s > σp, % ≥ 0, and a = (a1, . . . , an) an
anisotropy.

(i) Then f ∈ S ′(Rn) is an element of Bs,a
p (Rn) if, and only if, it can be

represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jm kβ(2jax−m), x ∈ Rn, (3.27)

with ‖λ|bs,%
p ‖ < ∞, absolute convergence being in Lmax(1,p) if max(1, p) <

∞ and if p = ∞ in L∞(Rn, w) with w(x) = (1 + |x|2)σ/2 where σ < 0.
Furthermore,

‖f |Bs,a
p (Rn)‖ ∼ inf ‖λ|bs,%

p ‖, (3.28)

where the infimum is taken over all admissible representations (3.27).
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(ii) Let λβ
jm(f) be given by (3.26). Then f ∈ B+,a

p (Rn) can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jm(f) kβ(2jax−m), (3.29)

absolute convergence being in Lmax(1,p) if max(1, p) < ∞ and if p = ∞
in L∞(Rn, w) with w(x) = (1 + |x|2)σ/2 where σ < 0, and, in addition,
f ∈ Bs,a

p (Rn) if, and only if, ‖λ(f)|bs,%
p ‖ < ∞.

(iii) Let f ∈ Bs,a
p (Rn), then (3.29) is an optimal representation, i.e.

‖f |Bs,a
p (Rn)‖ ∼ ‖λ(f)|bs,%

p ‖, (3.30)

where the equivalence constants are independent of f .

P r o o f. Step 1. We assume that f is given by (3.27) with ‖λ|bs,%
p ‖ < ∞

for some % ≥ 0. We want to show that f ∈ Bs,a
p (Rn) and that there exists a

constant c > 0 such that

‖f |Bs,a
p (Rn)‖ ≤ c‖λ|bs,%

p ‖. (3.31)

We rewrite (3.27) as

f =
∑

β

fβ with fβ =
∑
j,m

λβ
j,mkβ(2jax−m). (3.32)

By definition (3.11), the support of k is contained in an open ball centered at
the origin and of radius 2J−ε for some ε > 0. Using the atomic decomposition
for the spaces Bs,a

p (Rn) with 0 < p ≤ ∞ and s > σp described in Theorem 3.1.4,
we find by Definition 3.1.1 that

{2εaβ2−j(s−n/p)kβ(2jax−m) : j ∈ N0, m ∈ Zn}, β ∈ Nn
0 , (3.33)

are admitted systems of anisotropic atoms, and hence fβ ∈ Bs,a
p (Rn) for all

β ∈ Nn
0 , with

∥∥fβ|Bs,a
p (Rn)

∥∥ ≤ c 2−εaβ

( ∞∑
j=0

∑

m∈Zn

2j(s−n/p)p|λβ
jm|p

)1/p

, (3.34)

and c independent of β ∈ Nn
0 . Summation over β proves f ∈ Bs,a

p (Rn) and
(3.31). The absolute convergence follows in the same way as discussed in [52]
and [50, Sect. 1.4, 2.7].
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Step 2. Let f ∈ Bs,a
p (Rn) with 0 < p ≤ ∞ and s > σp; we shall show that we

can decompose it as (3.29). Note that this covers then (i) as well.

Let Ra
j , j ∈ N0, be a rectangle in Rn centered at the origin with side-length

2π2ja where 2ja = (2ja1 , . . . , 2jan). Let ϕa
j be given by (1.7), that is, with

supp ϕa
j ⊂ Ra

j . Now we can write that

f̂(x) =
∞∑

j=0

ϕa
j (x)f̂(x), x ∈ Rn,

and expand ϕa
j f̂ in Ra

j into a Fourier series,

(ϕa
j f̂)(ξ) =

∑

m∈Zn

bjm exp(−i2−jamξ), ξ ∈ Ra
j . (3.35)

We calculate bjm, j ∈ N0, m ∈ Zn, by

(ϕa
j f̂)∨(2−jam) = (2π)−

n
2

∫

Ra
j

(ϕa
j f̂)(y) exp(i2−jamy) dy

= (2π)−
n
2

∑

k∈Zn

bjk

∫

Ra
j

exp
(
i2−ja(m− k)y

)
dy

= (2π)−
n
2

∑

k∈Zn

bjk

∫

Ra
j

exp

(
i

n∑

l=1

2−jal(ml − kl)yl

)
dy.

Substitute ξl = 2−jalyl, then dξ = 2−j(a1+···+an) dy = 2−jn dy, and we arrive at

(ϕa
j f̂)∨(2−jam) = 2jn (2π)−

n
2

∑

k∈Zn

bjk

∫

Qπ

ei(m−k)ξ dξ, (3.36)

where Qπ is a cube of side-length 2π in each direction. For the latter term in
(3.36) we thus have

∫

Qπ

ei(m−k)ξ dξ =

{
(2π)n , m = k

0 , m 6= k

}
,

which by (3.36) finally leads to

bjm = (2π)−
n
2 2−jn (ϕa

j f̂)∨(2−jam)

= (2π)−n 2−jn

∫

Ra
j

(ϕa
j f̂)(ξ) exp(i2−jamξ) dξ. (3.37)
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By Proposition 2.1.1 and (3.37) we thus have for 0 < p ≤ ∞,

‖f |Bs,a
p (Rn)‖ ∼

( ∞∑
j=0

2j(s−n/p)p 2jnp
∑

m∈Zn

|bjm|p
)1/p

, (3.38)

(with the usual modification if p = ∞). Let ω be given by (3.16) and let
ωj(x) = ω(2−jax). The ωj has a compact support in Ra

j and it follows by (3.35)
that

(ϕa
j f̂)∨(x) =

∑

m∈Zn

bjm ω∨j (x− 2−jam)

= 2jn
∑

m∈Zn

bjm ω∨(2jax−m), x ∈ Rn. (3.39)

Let k be given by (3.11), (3.12). We expand the analytic function ω∨(2jax−m)
at 2−jal, l ∈ Zn, and obtain

k(2jax− l)ω∨(2jax−m)

=
∑

β∈Nn
0

2jaβ

β!
(Dβω∨)(l −m)(x− 2−jal)βk(2jax− l)

=
∑

β∈Nn
0

2jaβ

β!
(Dβω∨)(l −m)2−jaβ(2jax− l)βk(2jax− l)

=
∑

β∈Nn
0

2Jaβ

β!
(Dβω∨)(l −m)kβ(2jax− l), (3.40)

where we applied (3.13) in the last line. By (3.12), (3.39) and (3.40) we obtain

(ϕa
j f̂)∨(x) =

∑

m∈Zn

2jnbjm

∑

l∈Zn

k(2jax− l)ω∨(2jax−m)

=
∑

β∈Nn
0

∑

l∈Zn

kβ(2jax− l)
∑

m∈Zn

2jnbjm
2Jaβ

β!
(Dβω∨)(l −m).

Hence, as
(
ϕa

j

)
j∈N0

is a resolution of unity,

f =
∞∑

j=0

∑

β∈Nn
0

∑

l∈Zn

kβ(2jax− l) λβ
jl (3.41)

with

λβ
jl =

∑

m∈Zn

2jn bjm
2Jaβ

β!
(Dβω∨)(l −m). (3.42)
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We first check that those λβ
jl are optimal coefficients, and verify their represen-

tation (3.26) afterwards. We thus claim that for % ≥ 0 we can find a constant
c such that with λ = {λβ

jl : β ∈ Nn
0 , j ∈ N0, l ∈ Zn} given by (3.42),

‖λ|bs,%
p ‖ ≤ c‖f |Bs,a

p (Rn)‖ for all f ∈ Bs,a
p (Rn). (3.43)

We use an isotropic result [51, Sect. 3.1.1], which states that for any ε > 0
there are constants c > 0 and cε > 0 such that

|Dβω∨(x)| ≤ cε 2c|β| (1 + |x|2)−ε for x ∈ Rn, β ∈ Nn
0 , (3.44)

where c is independent of x, ε, and β, and cε independent of x, β. Furthermore,
note that there are constants c2 > c1 > 0 such that for all ξ ∈ Rn,

c1 (1 + |ξ|)1/amax ≤ 1 + |ξ|a ≤ c2 (1 + |ξ|)1/amin ,

cf. [31]. On the other hand, we have amin|β| ≤ aβ ≤ amax|β|, thus (3.44) implies

|Dβω∨(x)| ≤ c′ε 2c′aβ (1 + |x|a)−ε for x ∈ Rn, β ∈ Nn
0 . (3.45)

Let p ≥ 1. We interprete λβ
jl as a convolution in `p : let l ∈ Zn and

al =
∑

m∈Zn

cmdl−m,

then ‖al|`p‖ ≤ ‖dk|`1‖‖cm|`p‖. Put dk =
2Jaβ

β!
(Dβω∨)(k), then (3.45) leads to

‖dk|`1‖ ≤ Cε
2(J+c′)aβ

β!
≤ c(%) 2−(%+1)aβ,

if ε > 0 is chosen appropriately. The last inequality results from an estimate
of β! = β1! · · · βn! by Stirling’s formula, n! = Γ(n + 1) ∼ √

n
(

n
e

)n
, n ∈ N.

Consequently, (3.42) with al = λβ
jl and cm = 2jn bjm implies, that for % ≥ 0

there is a constant c(%) such that

( ∑

l∈Zn

|λβ
jl|p

)1/p

≤ c(%)2−(%+1)aβ

( ∑

l∈Zn

|2jnbjl|p
)1/p

. (3.46)

If p < 1 then one uses the p−triangle inequality. Now (3.43) follows from (3.46)
and (3.38).
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Step 3. We need to prove that λβ
jl can be represented as (3.26). By (3.37) and

the properties of the Fourier transform we have

2jnbjm = (2π)−n

∫

Rn

(ϕa
j )
∨(2−jam− y)f(y) dy, j ∈ N0, (3.47)

where ϕ is given by Definition 3.2.1. Now ϕa
j (x) = ϕ(2−jax) leads to

2jnbjm = (2π)−n2jn

∫

Rn

ϕ∨(m− 2−jay)f(y) dy, j ∈ N. (3.48)

Recall that (Dβω∨)(ξ) = i|β|(xβω(x))∨(ξ). Thus (3.17) implies for j ∈ N,

λβ
jl =

∑

m∈Zn

2jnbjm
2Jaβ

β!
(Dβω∨)(l −m)

=
∑

m∈Zn

2jn bjm
2Jaβ

β!
i|β| (xβω(x))∨(l −m)

=
∑

m∈Zn

2jn bjm
2Jaβ

β!
i|β|

(2π)n · β!

i|β|2Jaβ
(ωβ)∨(l −m)

= 2jn

∫

Rn

f(y)
∑

m∈Zn

(ωβ)∨(l −m) ϕ∨(m− 2jay) dy. (3.49)

Replacing l −m by m and using ϕ∨(z) = ϕ̂(−z) we get

λβ
jl = 2jn

∫

Rn

f(y)
∑

m∈Zn

(ωβ)∨(m) ϕ̂(2jay − l + m) dy

= 2jn(Φβ
jl, f), j ∈ N, (3.50)

where we used (3.24) and (3.25). The argument for j = 0 works analogously,
so the proof is finished. 2

Remark 3.2.4 The isotropic version of this result can be found in [52] which
in turn is a specification and modification of [50, Thm. 2.9], where also further
references and approaches are discussed. Note that (i) represents a so-called
sub-atomic (or quarkonial) decomposition in Bs,a

p (Rn); we refer also to [17,
Thm. 3.7].

We study the “dual” situation, i.e. spaces Bs,a
p (Rn) with s < 0, too. For that

purpose, denote the counterpart of B+,a
p (Rn) by

B−,a
p (Rn) =

⋃
s<0

Bs,a
p (Rn), 0 < p ≤ ∞. (3.51)
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Let k and kβ be given by (3.12) and (3.13), and consider the corresponding
local means,

kβ(t, f)(x) =

∫

Rn

kβ(y)f(x + tay) dy, t > 0, x ∈ Rn, (3.52)

where x + tay = (x1 + ta1y1, . . . , xn + tanyn), and put

kβ
jm(f) = kβ(2−j, f)(2−jam), j ∈ N0, m ∈ Zn. (3.53)

We use the norm given by (3.15) with % = 0, denoted simply by bs
p = bs,0

p for

convenience. Let k(f) = {kβ
jm(f) : j ∈ N0, m ∈ Zn, β ∈ Nn

0}, hence

‖k(f)|bs
p‖ =

( ∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

2j(s−n/p)p|kβ
jm(f)|p

) 1
p

, (3.54)

and let Φβ
jm defined in (3.25).

Theorem 3.2.5 Let 1 < p ≤ ∞, s < 0.

(i) Then f ∈ S ′(Rn) is an element of Bs,a
p (Rn) if, and only if, it can be

represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

λβ
jmΦβ

jm, x ∈ Rn, (3.55)

with ‖λ|bs
p‖ < ∞, and unconditional convergence in S ′(Rn). Furthermore,

‖f |Bs,a
p (Rn)‖ ∼ inf ‖λ|bs

p‖, (3.56)

where the infimum is taken over all admissible representations (3.55).

(ii) Any f ∈ B−,a
p (Rn) can be represented as

f =
∑

β∈Nn
0

∞∑
j=0

∑

m∈Zn

kβ
jm(f) Φβ

jm, (3.57)

unconditional convergence in S ′(Rn) and, in addition, f ∈ Bs,a
p (Rn) if,

and only if, ‖k(f)|bs
p‖ < ∞.

(iii) Let f ∈ Bs,a
p (Rn), then (3.57) is an optimal representation, i.e.

‖f |Bs,a
p (Rn)‖ ∼ ‖k(f)|bs

p‖, (3.58)

where the equivalence constants are independent of f .



42 Decompositions in anisotropic Besov spaces

We begin the proof of Theorem 3.2.5 with some preparation. Let l ∈ Zn,
K, L ∈ R, and al ∈ CK anisotropic atoms given by Definition 3.1.1 with
supp al ⊂ {y ∈ Rn : |y|a ≤ c}, for some appropriate c > 0. We know by (3.5)
that ∫

Rn

xβal(x) dx = 0 if aβ ≤ L. (3.59)

Let µ = (µl)l∈Zn denote the decay factors,

|Dγal(x)| ≤ µl, aγ ≤ K, x ∈ Rn. (3.60)

We define now (special) anisotropic molecules

b(x) =
∑

l∈Zn

al(x− l), x ∈ Rn, (3.61)

and

bj,m(x) = 2−j(s−n
p
) b(2jax−m), j ∈ N0, m ∈ Zn, x ∈ Rn. (3.62)

Remark 3.2.6 Normalised (isotropic) molecules share the decay properties
and moment conditions with normalised (isotropic) atoms, but lack the as-
sumption concerning the compact support, see (the isotropic counterparts of)
(3.1), (3.3). This is replaced by sufficiently strong decay assumptions. In
the isotropic case the counterpart of Theorem 3.1.4 remains valid if one uses
molecular instead of atomic decompositions, cf. [21, Sect. 5]. There are also
anisotropic versions of that result in the literature, see [6]. However, by the
special structure of building blocks we shall use, we do not need this assertion
in its full generality, but only a special case which is simpler to prove. Thus we
include this consideration below separately and give a direct proof.

Proposition 3.2.7 Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, and µ = (µl)l∈Zn ∈
`min(1,p). Let f ∈ S ′(Rn) be given by

f =
∞∑

j=0

∑

m∈Zn

λj,m bj,m, (3.63)

where λ = {λj,m ∈ C : j ∈ N0, m ∈ Zn}, λ ∈ bpq, and bj,m, j ∈ N0, m ∈ Zn,
are given by (3.62). Then

‖f |Bs,a
pq (Rn)‖ ≤ c ‖λ|bpq‖. (3.64)
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P r o o f. We thank the idea to this proof some discussions with Prof. H.
Triebel.

By definition and (3.61), (3.62),

f =
∞∑

j=0

∑

m∈Zn

λj,m bj,m

=
∞∑

j=0

2−j(s−n
p
)

∑

m∈Zn

λj,m b(2jax−m)

=
∞∑

j=0

2−j(s−n
p
)

∑

m∈Zn

λj,m

∑

l∈Zn

al(2
jax−m− l)

=
∞∑

j=0

2−j(s−n
p
)
∑

k∈Zn

∑

l∈Zn

λj,k−l al(2
jax− k)

=
∞∑

j=0

2−j(s−n
p
)
∑

k∈Zn

γj,k dj,k(x) (3.65)

where we have put

γj,k =
∑

l∈Zn

µl|λj,k−l| > 0, j ∈ N0, k ∈ Zn,

and

dj,k(x) = γ−1
j,k

∑

l∈Zn

λj,k−l al(2
jax− k), j ∈ N0, k ∈ Zn, x ∈ Rn. (3.66)

We claim that 2−j(s−n
p
) dj,k are anisotropic atoms according to Definition 3.1.1.

Assume first j = 0, then

|d0,k(x)| ≤ γ−1
0,k

∑

l∈Zn

|λ0,k−l| · µl = 1,

and likewise for all derivatives Dγd0,k, γ ∈ Nn
0 , aγ ≤ K, according to (3.60). In

case of j ∈ N and γ ∈ Nn
0 we conclude similarly,

∣∣∣Dγ
(
2−j(s−n

p
) dj,k(x)

)∣∣∣ ≤ 2−j(s−n
p
) γ−1

j,k

∑

l∈Zn

|λj,k−l|
∣∣(Dγal) (2jax− k)

∣∣ 2jaγ

≤ 2−j(s−n
p
)+jaγ γ−1

j,k

∑

l∈Zn

|λj,k−l| µl

= 2−j(s−n
p
)+jaγ
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as long as aγ ≤ K. The corresponding moment conditions (3.5) are satisfied
by (3.59), and condition (3.3) is guaranteed by construction (3.66). Hence

2−j(s−n
p
) dj,k are anisotropic atoms and Theorem 3.1.4 gives the anisotropic

atomic decomposition

f =
∞∑

j=0

∑

k∈Zn

γj,k 2−j(s−n
p
) dj,k

with ∥∥f |Bs,a
pq (Rn)

∥∥ ≤ c ‖γ|bpq‖ .

It remains to estimate ‖γ|bpq‖ by ‖λ|bpq‖, where the assumption on the decay
factors, i.e. µ ∈ `min(p,1) is now involved. Let first p ≥ 1, then we interprete
γj,k as a convolution in `p and obtain

( ∑

k∈Zn

|γj,k|p
) 1

p

≤
( ∑

l∈Zn

µl

) ( ∑

m∈Zn

|λj,m|p
) 1

p

= ‖µ|`1‖
( ∑

m∈Zn

|λj,m|p
) 1

p

.

If 0 < p < 1, we have by the p−triangle inequality

∑

k∈Zn

|γj,k|p ≤
∑

k,l∈Zn

µp
l |λj,k−l|p ≤ ‖µ|`p‖p

∑

m∈Zn

|λj,m|p.

This finally results in

‖γ|bpq‖ ≤ c
∥∥µ|`min(1,p)

∥∥ ‖λ|bpq‖

as desired, i.e.
∥∥f |Bs,a

pq (Rn)
∥∥ ≤ c ‖γ|bpq‖ ≤ c′

∥∥µ|`min(1,p)

∥∥ ‖λ|bpq‖. 2

We finally can prove the Theorem 3.2.5.
P r o o f.( of Theorem 3.2.5)

Step 1. We assume that f is given by (3.55) with ‖λ|bs
p‖ < ∞. We want to

show that f ∈ Bs,a
p (Rn) and that there exists a constant c > 0 such that

‖f |Bs,a
p (Rn)‖ ≤ c‖λ|bs

p‖. (3.67)

Recall our particular construction (3.23), (3.24), (3.25) with ϕ ∈ S(Rn) given
by Definition 3.2.1. Then for each β ∈ Nn

0 ,

{2εaβ2−j(s−n
p
)Φ̃β

jm : j ∈ N0, m ∈ Zn} (3.68)

where Φ̃β
jm =

∑
l∈Zn k(x − l)Φβ

jm, are admitted anisotropic special molecules
in Bs,a

p (Rn) in the above sense (3.59)-(3.62), satisfying, in addition, the decay
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assumption µ ∈ `min(p,1). Thus we can apply Proposition 3.2.7 with q = p and
then (3.67) follows in the same way as in Step 1 in the proof of Theorem 3.2.3.
This covers the unconditional convergence, too.

Step 2. Let k(f) = {kβ
jm(f) : β ∈ Nn

0 , j ∈ N0, m ∈ Zn} be given by (3.52),
(3.53), i.e.

kβ
jm(f) = kβ

(
2−j, f

) (
2−jam

)

=

∫

Rn

kβ(y) f
(
2−jam + 2−jay

)
dy

= 2jn

∫

Rn

kβ(2jay −m)f(y) dy

= 2jn
(
kβ(2ja · −m), f

)
. (3.69)

We have to show that there is some c > 0 such that for all f ∈ Bs,a
p (Rn),

‖k(f)|bs
p‖ ≤ c

∥∥f |Bs,a
p (Rn)

∥∥ . (3.70)

Using (3.54) with % = 0 (recall our convention bs
p = bs,0

p ), (3.69) can thus be
rewritten as

∥∥k(f)|bs
p

∥∥ =

∥∥∥∥
∑

β,j,m

2j(s−n
p
)kβ

jm

∣∣∣`p

∥∥∥∥

=

∥∥∥∥
∑

β,j,m

2j(s−n
p
)+jn

(
kβ(2ja · −m), f

) ∣∣∣`p

∥∥∥∥. (3.71)

By duality, `p = (`p′)
′ with 1

p
+ 1

p′ = 1 for 1 < p ≤ ∞, taking additionally

2j(s−n
p
)+jn = 2

j(s+ n
p′ ) into account, we are thus led to

∥∥k(f)|bs
p

∥∥ =

∥∥∥∥
∑

β,j,m

2
j(s+ n

p′ )
(
kβ(2ja · −m), f

) ∣∣∣`p

∥∥∥∥

= sup∥∥∥λ|b−s
p′

∥∥∥≤1

∑

β,j,m

λβ
jm

(
kβ(2ja · −m), f

)
, (3.72)

where the supremum in (3.72) is taken over all sequences λ = {λβ
jm : β ∈

Nn
0 , j ∈ N0, m ∈ Zn}, such that the right-hand side in (3.72) is non-negative,

and ‖λ|b−s
p′ ‖ ≤ 1. Consequently,

∥∥k(f)|bs
p

∥∥ ≤ sup∥∥∥λ|b−s
p′

∥∥∥≤1

|(g, f)|, where g(x) =
∑

β,j,m

λβ
jmkβ(2jax−m). (3.73)
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Note that our assumptions s < 0 and 1 < p ≤ ∞ imply −s > 0 = σp′ such that
Theorem 3.2.3 can be applied to g ∈ B−s,a

p′ (Rn). Thus we arrive at

∥∥k(f)|bs
p

∥∥ ≤ sup
{|(g, f)| : g ∈ B−s,a

p′ (Rn), ‖g|B−s,a
p′ (Rn)‖ ≤ c

}
, (3.74)

where c > 0 is independent of g ∈ B−s,a
p′ (Rn). Now we use the duality

(B−σ,a
p′ (Rn))′ = Bσ,a

p (Rn), 1 ≤ p′ < ∞, σ ∈ R, (3.75)

see [53], and obtain ∥∥k(f)|bs
p

∥∥ ≤ c′
∥∥f |Bs,a

p (Rn)
∥∥ . (3.76)

Step 3. Let 1 < p ≤ ∞, s < 0 and f ∈ Bs,a
p (Rn). It is sufficient to verify (3.57)

in order to complete the proof. Let ψ ∈ S(Rn) be arbitrary, then Theorem 3.2.3,
in particular (3.29) with (3.26), yields

ψ =
∑

β,j,m

2jn(Φβ
jm, ψ) kβ(2jax−m) (3.77)

with unconditional convergence in any space Bσ,a
p′ (Rn) with σ > 0. Hence, by

(3.69),

(f, ψ) =

( ∑

β,j,m

2jn
(
f, kβ(2ja · −m)

)
Φβ

jm, ψ

)
=

( ∑

β,j,m

kβ
jm(f)Φβ

jm, ψ

)
, (3.78)

that is
f =

∑

β,j,m

kβ
jm(f) Φβ

jm

in S ′(Rn). By (i) and our preceding remarks it follows that (3.57) converges
unconditionally in S ′(Rn). 2

Remark 3.2.8 Parallel to Remark 3.2.4 we refer to the isotropic version of
the above result in [52] with further discussions (about local means) in [47] and
[50].



4 Traces and approximation
numbers

As an application of the wavelet decomposition theorem given in section 3.2 in
this chapter we give a unified approach to the study of traces on anisotropic
function spaces. In section 4.1 we study the existence and properties of the
trace operator. In section 4.2 we recall the concept of approximation numbers.
In section 4.3 we define anisotropic d−sets and in the last section we obtain
estimates for the approximation numbers of traces on anisotropic d−sets from
Rn.

4.1 General measures

Let µ be a positive Radon measure in Rn with compact support

Γ = supp µ, 0 < µ(Rn) < ∞, |Γ| = 0, (4.1)

where |Γ| is the Lebesgue measure of Γ. For 1 ≤ p < ∞ we denote by Lp(Γ) =
Lp(Γ, µ) the usual complex Banach space, normed by

‖f |Lp(Γ, µ)‖ =

( ∫

Rn

|f(x)|pµ(dx)

)1/p

=

( ∫

Γ

|f(γ)|pµ(dγ)

)1/p

.

Since µ is Radon, S(Rn)|Γ is dense in Lp(Γ), for details see [49, p.7]. If ϕ ∈ S
then trΓϕ = ϕ|Γ makes sense pointwise. If 1 < p < ∞ and s > 0 then
the embedding trΓBs,a

p (Rn) ↪→ Lp(Γ) must be understood as follows: we ask
whether there is a positive number c > 0 such that for any ϕ ∈ S,

‖trΓϕ|Lp(Γ)‖ ≤ c‖ϕ|Bs,a
p (Rn)‖. (4.2)

If this is the case we use that S(Rn) is dense in Bs,a
p (Rn) for 0 < p < ∞ this

inequality can be extended by completion to any f ∈ Bs,a
p (Rn) and the resulting

function is denoted by trΓf

trΓ : Bs,a
p (Rn) ↪→ Lp(Γ) (4.3)

47
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and the independence of trΓf from the approximating sequence is shown in
the standard way. On the other hand, if f ∈ Lp(Γ) is given, then f can be
interpreted in the usual way as a tempered distribution idΓf , given by

(idΓf)(ϕ) =

∫

Γ

f(γ)ϕ(γ)µ(dγ)

=

∫

Γ

f(γ)(trΓϕ)(γ)µ(dγ), ϕ ∈ S(Rn). (4.4)

We call idΓ the identification operator. Let again 1 < p < ∞ and let

1

p
+

1

p′
= 1. (4.5)

Then
(Lp(Γ))′ = Lp′(Γ) and (Bσ,a

p (Rn))′ = B−σ,a
p′ (Rn) (4.6)

for any σ ∈ R. The first assertion is well known, the second it follows by [55,
Sect. 5.1.7]. In particular, all Bs,a

p (Rn) and also Lp(Γ) with 1 < p < ∞ are
reflexive. By (4.4), the operators trΓ and idΓ are dual to each other. Hence,
(4.3) is equivalent to

idΓ : Lp′(Γ) ↪→ B−s,a
p′ (Rn), (4.7)

and
tr
′
Γ = idΓ id

′
Γ = trΓ. (4.8)

In following we study the existence of the trace operator. We proceed similar
to [54], dealing with the isotropic case. Let Qa

jm be the rectangles in Rn with
side length 2−ja1 , . . . , 2−jan and centered at 2−jam where m ∈ Zn and j ∈ N0.
Let

µj = sup
m∈Zn

µ(Qa
jm), j ∈ N0. (4.9)

Proposition 4.1.1 Let

1 < p < ∞,
1

p
+

1

p′
= 1, s > 0.

Let µ be the Radon measure in Rn with

Γ = supp µ compact, 0 < µ(Rn) < ∞, |Γ| = 0, (4.10)

and ∑

j∈N0

2−jp′(s−n
p
)µp′−1

j < ∞ where µj = sup
m∈Zn

µ(Qa
jm). (4.11)
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Then trΓ,
trΓ : Bs,a

p (Rn) ↪→ Lp(Γ) (4.12)

exists and is compact. Furthermore there is a constant c (depending on p and
s) such that for all measures µ with (4.10), (4.11),

‖trΓ‖ ≤ c

( ∑

j∈N0

2−jp′(s−n
p
)µp′−1

j

) 1
p′

. (4.13)

Remark 4.1.2 The result above is the anisotropic version of [54, Proposition
3]. In our proof below we use the wavelet decomposition introduced in Theo-
rem 3.2.3. In the sequel we shall stick to the notation

kβ
jm(x) = kβ(2jax−m), β ∈ Nn

0 , j ∈ N0, m ∈ Zn. (4.14)

P r o o f.( of Proposition 4.1.1)
Step 1. We prove the existence of (4.12) like in the isotropic case, see [54,
Prop. 2], [50, Theorem 9.3, Corollary 9.8]. In our case we use the anisotropic
local means and the equivalent norm in anisotropic function spaces, see [18,
Sect. 2.2]. In comparison with [50, Theorem 9.3] we need only a special case
where u = v = p′ and σ = −s. On the other hand, the existence of trΓ can also
be shown by similar arguments as presented below.
Step 2. Let f ∈ Bs,a

p (Rn) be given by (3.29), (3.30) (we use the notation
(4.14)). For any fixed β ∈ Nn

0 we have
∥∥∥∥

∞∑
j=0

∑

m∈Zn

λβ
jm(f)kβ

jm|Lp(Γ)

∥∥∥∥ ≤
∞∑

j=0

∥∥∥∥
∑

m∈Zn

λβ
jm(f)kβ

jm|Lp(Γ)

∥∥∥∥

≤ c

∞∑
j=0

( ∫

Rn

∑

m∈Zn

|λβ
jm(f)|p|kβ

jm(x)|pµ(dx)

)1/p

≤ c

∞∑
j=0

( ∑

m∈Zn

|λβ
jm(f)|p

∫

cQa
jm

|kβ
jm(x)|pµ(dx)

)1/p

≤ c′
∞∑

j=0

µ
1
p

j

( ∑

m∈Zn

|λβ
jm(f)|p

)1/p

(4.15)

where we used the boundedness of k and (4.9). We apply the Hölder inequality,
recall 1

p
+ 1

p′ = 1, and so we can continue
∥∥∥∥

∞∑
j=0

∑

m∈Zn

λβ
jm(f)kβ

jm|Lp(Γ)

∥∥∥∥

≤ c′
( ∞∑

j=0

2−jp′(s−n
p
)µ

p′
p

j

)1/p′( ∑
j,m

2j(s−n
p
)p|λβ

jm(f)|p
)

.
1/p

(4.16)
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We choose % > 0. Then it follows by (3.15) and (3.30) that

‖trΓf |Lp(Γ)‖ ≤ c′
( ∞∑

j=0

2−jp′(s−n
p
)µp′−1

j

)1/p′

‖f |Bs,a
p (Rn)‖ (4.17)

where c′ is independent of µ. This proves (4.13).
Step 3. We prove that trΓ is compact. Let B ∈ N, J ∈ N, [aβ] = max{r ∈
Z : r ≤ aβ}, and let trB,J

Γ be given by

trB,J
Γ f =

∑

[aβ]≤B

∑
j≤J

∑

m∈Zn

Γ
λβ

jm(f)kβ
jm, (4.18)

where again f ∈ Bs,a
p (Rn) is given by (3.29),(3.30) and where the sum

∑

m∈Zn

Γ

is restricted to those m ∈ Zn such that the rectangles Qa
jm have a non-empty

intersection with Γ. For given δ > 0 and suitably chosen % > 0 it follows by
the above arguments for f ∈ Bs,a

p (Rn) having norm of at most 1 that

‖(trΓ − trB,J
Γ )f |Lp(Γ)‖ ≤

≤ c

( ∑

[aβ]≥B

2−δaβ

)
+ c

( ∑

[aβ]≤B

2−δaβ

)( ∑
j≥J

2−jp′(s−n
p
)µp′−1

j

)1/p′

, (4.19)

see (3.15) and (4.16), (4.17). By (4.11) we find for any given ε > 0 sufficiently
large numbers B and J such that

‖trΓ − trB,J
Γ ‖ ≤ ε. (4.20)

Then trΓ is compact, as trB,J
Γ are finite rank operators. 2

4.2 Approximation numbers

In the following we recall the concept of approximation numbers. Let A and
B be two quasi Banach spaces. The family of all linear bounded operators
T : A → B will be denoted by L(A,B) or L(A) if A = B. Let T ∈ L(A, B),
then for any k ∈ N the kth approximation number ak(T ) of T is given by

ak(T ) = inf{‖T − L‖ : L ∈ L(A,B), rank L < k}, (4.21)

where rank L is the dimension of the range of L. These numbers have various
properties given in the following lemma.
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Lemma 4.2.1 Let A,B, C be Banach spaces, let T, S ∈ L(A,B) and suppose
that R ∈ L(B,C).

(i) ‖T‖ = a1(T ) ≥ a2(T ) · · · ≥ 0

(ii) for all n, m ∈ N,

am+n−1(S + T ) ≤ am(S) + an(T )

(iii) for all n, m ∈ N,

am+n−1(R ◦ T ) ≤ am(R)an(T )

(iv) an(T ) = 0 ⇐⇒ rank T < n.

These formulations coincide essentially with [13, II. Prop. 2.2], where one finds
also a short proof. Further properties, comments and references to the literature
may be found in [11, p.11-18], [13, Chap. II.] and [8]. We restrict ourselves to
those assertions which we need later on.
Let A be a complex quasi-Banach space and T ∈ L(A) a compact map. We
know from [11, Theorem 1.2] that the spectrum of T , apart from the point 0,
consists solely of eigenvalues of finite algebraic multiplicity: let {λk(T ) : k ∈ N}
be the sequence of all nonzero eigenvalues of T , repeated according to algebraic
multiplicity and ordered so that

|λ1(T )| ≥ |λ2(T )| ≥ . . . ≥ 0. (4.22)

If T has only m(< ∞) distinct eigenvalues and M is the sum of their algebraic
multiplicities, we put λk(T ) = 0 for k > M .

Proposition 4.2.2 (i) Let A and B two Banach spaces and T ∈ L(A,B)
with dual operator T ′ ∈ L(A′, B′), then

ak(T ) = ak(T
′) for all k ∈ N. (4.23)

(ii) Let H be a Hilbert space and let T ∈ L(H) be a compact, non-negative
and self adjoint operator. Then the approximation numbers ak(T ) of T
coincide with its eigenvalues (ordered as in (4.22)).

Remark 4.2.3 Proofs of these well-known assertions may be found in [13],
Proposition 2.5, p.55 for (i), and Theorem 5.10, p.91 for (ii).
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At the end of this chapter we compare our results with Farkas results for the
entropy number, see [18, Sect. 6.1], and we recall an important connection
between entropy numbers and approximation numbers.
Let 0 < p < ∞, A and B be an arbitrary Banach spaces and T ∈ L(A, B).
Then

sup
k=1,...,m

k
1
p ek(T ) ≤ c sup

k=1,...,m
k

1
p ak(T ) (4.24)

where c = c(p) > 0, see [8, Theorem 3.1.1].

In following we estimate the approximation numbers of the compact trace op-
erator. Let T = trΓ according to Proposition 4.1.1. We strengthen (4.11)
by ∑

j≥J

2−jp′(s−n
p
)µp′−1

j ∼ 2−Jp′(s−n
p
)µp′−1

J , J ∈ N0, (4.25)

where only the cases s ≤ n
p

are of interest, otherwise (4.25) is always satisfied.

Proposition 4.2.4 Let

1 < p < ∞,
1

p
+

1

p′
= 1, s > 0.

Let µ be a Radon measure in Rn with (4.10) and (4.25). Let ak = ak(trΓ) be the
approximation numbers of the compact operator trΓ in (4.12). There are two
positive numbers c and c′ such that

ac2nJ ≤ c′2−J(s−n
p
)µ

1
p

J , J ∈ N0, (4.26)

where c2nJ is always assumed to be a natural number.

P r o o f. Note that (4.25) implies (4.11), thus by Proposition 4.1.1 the operator
trΓ is compact. We refine (4.18) by

trJ
Γf =

∑

[aβ]≤J

∑

j≤J−[aβ]

∑

m∈Zn

Γ
λβ

jm(f)kβ
jm, J ∈ N, (4.27)

where again f ∈ Bs,a
p (Rn) is given by (3.29),(3.30) and the last sum has the

same meaning as the last sum in (4.18). As µ is a measure in Rn we have that

µK ≤ c2(J−K)nµJ , K ≤ J, (4.28)

also in the anisotropic case, recall a1 + · · · + an = n. Let δ > 0 be sufficiently
large. By (4.28) we obtain for f ∈ Bs,a

p (Rn) having norm of at most 1 in analogy
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to (4.19) that

‖(trΓ − trJ
Γ)f |Lp(Γ)‖ ≤ c2−δJ + c

∑

[aβ]≤J

2−δaβ

( ∑

j≥J−[aβ]

2−jp′(s−n
p
)µ

p′
p

j

)1/p′

≤ c2−δJ + c
∑

[aβ]≤J

2−δaβ2−(J−[aβ])(s−n
p
)µ

1
p

J−[aβ]

≤ c2−δJ + cµ
1
p

J 2−J(s−n
p
)

∑

[aβ]≤J

2−δaβ+aβ(s−n
p
)+aβ n

p

≤ c′2−J(s−n
p
)µ

1
p

J . (4.29)

In the second estimate we used assumption (4.25) and in the next one (4.28).
For the rank of trJ

Γ we have the estimate

rank(trJ
Γ) ≤ c

∑

[aβ]≤J

2n(J−[aβ]) ≤ c′2nJ .

This proves (4.26). 2

4.3 Anisotropic d−sets in Rn

We consider special measures µ and assume Γ = supp µ for some measure ac-
cording to Section 4.1, in particular with (4.1), now. Let again a = (a1, . . . , an)
be a given anisotropy.

Definition 4.3.1 Let 0 < d < n. Then Γ ⊂ Rn is called an anisotropic
d−set if

µ(Ba(γ, r)) ∼ rd, 0 < r < 1, (4.30)

where Ba(γ, r) = {y ∈ Rn : |y − γ|a ≤ r} and γ ∈ Γ.

In the following proposition we prove the existence of anisotropic d−sets.

Proposition 4.3.2 For every 0 < d < n there exists an anisotropic d−set.

P r o o f. For simplicity we prove this proposition for the case n = 2. If n > 2
this can be done in a similar way.
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0 1

1

ra2

ra1

We use the well-known mass dis-
tribution procedure to construct a
measure µ with the desired prop-
erties. We refer to [49, Ch.4] for
details. Let Q = [0, 1]2 be the
closed cube with side-length 1, we
take the affine contractions (Am)N

m=1

on R2 which map the unit square
to the rectangles (AmQ)N

m=1 with
side-lengths ra1 and ra2 where 0 <
a1 < a2 and a1 + a2 = 2 as in Fig-
ure 1, so that they are disjoint and
µ(AmQ) = N−1. Furthermore we
have Nr2 = N |AmQ| < 1. Let

AQ = (AQ)1 =
N⋃

m=1

AmQ, (AQ)0 = Q,

(AQ)k = A((AQ)k−1).

The sequence of sets is monotonically decreasing and by [14, Theorem 8.3]

Γ = (AQ)∞ =
⋂

k∈N
(AQ)k = lim

k→∞
(AQ)k

is the uniquely determined fractal generated by the contractions (Am)N
m=1. But

on the other hand we assume that µ(AmQ) = rd, where m = 1, . . . , N , and
from here we get that d = log N

| log r| . If 0 < d < 2 then it follows by elementary

geometrical reasoning that one can finds (sufficiently small) numbers r > 0 and
suitably chosen natural numbers N ∈ N with the desired properties. 2

Remark 4.3.3 Our definition for the anisotropic d−set is a generalization of
Farkas definition [18, Sect. 3.1]. In the following we recall his definition. If
j ∈ N0 and Nj ∈ N0 we deal with sets of open rectangles {Rjl : l = 1, . . . , Nj}
in Rn having sides parallel to the axes, the side length of the rectangle Rjl with

respect to the xi−axis is denoted by rj,l
i where i = 1, . . . , n. We will always

assume that the side lengths of the rectangles Rjl are ordered in the same way,

for example rj,l
1 ≤ . . . ≤ rj,l

n for any j ∈ N0 and any l = 1, . . . , Nj.
Let Q be a cube in Rn with side length 1, let 0 < d < n, let a = (a1, . . . , an) a
given anisotropy and let c1, c2 > 0 given numbers.
Let N0 = 1 and for any j ∈ N let Nj be a natural number satisfying

c12
jd ≤ Nj ≤ c22

jd.
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A compact set Γ ⊂ Rn is called a regular anisotropic d− set (with respect
to the anisotropy a) if for any j ∈ N0 there exists a finite sequence of open
rectangles {Rjl : l = 1, . . . , Nj} having sides parallel to the axes, R01 = Q̊, the
interior of Q, such that:

(i) there exists a constant 0 < c0 ≤ 1 such that for all i = 1, . . . , n, all j ∈ N0

and all l = 1, . . . , Nj

(c02
−j)ai ≤ rj,l

i ≤ 2−jai (4.31)

(ii) if l 6= l′ then Rjl ∩Rjl′ = ∅
(iii) for any rectangle Rj+1,k there exists a rectangle Rjl, l = l(k), such that

Rj+1,k ⊂ Rjl

(iv) for any j ∈ N0 and any l = 1, . . . , Nj

(vol Rjl)
d
n =

∑
Rj+1,k⊂Rjl

(vol Rj+1,k)
d
n (4.32)

(v)

Γ =
∞⋂

j=0

Nj⋃

l=1

Rjl.

Let n = 2, let a = (a1, a2) a 2−dimensional anisotropy and let 0 < d < 2, then
Γ is also an anisotropic d−set in the sense of Triebel [49, Sect. 5.2].

Let 0 < d < n and let Γ be the regular anisotropic d−set (with respect to
the given anisotropy a = (a1, . . . , an)) introduced above. Then there exists a
Radon measure µ in Rn uniquely determined with supp µ = Γ and

µ(Γ ∩Rjl) = (vol Rjl)
d
n , j ∈ N0 and l = 1, . . . , Nj, (4.33)

see [18, Theorem 3.5]. Let Ba(x, 2−j) = {y ∈ Rn : |y − x|a ≤ 2−j} be an
anisotropic ball like in Definition 4.3.1 with r = 2−j. It is easy to see that
Ba(x, 2−j) ⊂ {y ∈ Rn : |yi − xi| ≤ c2−jai , i = 1, . . . , n}. By (4.31) Ba(x, 2−j)
has a nonempty intersection with at most N rectangles Rjl, (l = 1, . . . , Nj),
where N is independent of j so that using (4.33) we get

µ(Ba(x, 2−j) ∩ Γ) ≤ c′2−jd

where c′ > 0 is independent of j.
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If 0 < κ < 1 then κRjl denotes the rectangle concentric with Rjl and with

side lengths respectively κrj,l
1 , . . . , κrj,l

n . The regular anisotropic d−set intro-
duced above equipped with the measure µ according to (4.33) is called proper
if there exist two numbers 0 < κ < 1 and 0 < c ≤ 1 such that

µ(Γ ∩ κRjl) ≥ c(vol Rjl)
d
n , j ∈ N0, l = 1, . . . , Nj. (4.34)

Following the lines of the proof of [49, Sect. 5.13] it turns out that if Γ is
generated by linear contractions and if Γ ∩ Q̊ 6= ∅ then Γ is proper. The Defi-
nition 4.3.1 covers also the feature of Γ to be proper, because by (4.30) we have
that

µ(Ba(x, 2−j) ∩ Γ) ≥ c′2−jd,

where c′ > 0. So it is easy to see that Farkas regular anisotropic d-set with
proper property is also an anisotropic d-set according to Definition 4.3.1.

Example 4.3.4 Let Q = [0, 1]2 and let log be taken with respect to the base 2,
let 1 < K1 < K2 be natural numbers so that K1

K2
= 2k + 1 for some k ∈ N, and

let

a1 =
2 log K1

log(K1K2)
, a2 =

2 log K2

log(K1K2)
, κ =

1

2
log(K1K2).

We can see that a1, a2 > 0 and a1 +a2 = 2. Let (Am)N
m=1 be N ≥ 2 contractions

of R2 into itself specified by

Am : x = (x1, x2) 7−→ (ηm
1 2−κa1x1, η

m
2 2−κa2x2) + xm (4.35)

for every m = 1, . . . , N where ηm
2 -is always 1 and we choose ηm

1 = 1 in the first
K2 columns, ηm

1 = −1 in the second K2 columns, then again ηm
1 = 1 in the

third K2 columns and so on, and xm in (4.35) is chosen such that we have the
situation as depicted in Fig.2. We assume AmQ ⊂ Q for all m = 1, . . . , N ,
AmQ̊ ∩ Am′Q̊ = ∅ if m 6= m′, and we suppose that the rectangles AmQ are
located in the columns as indicated in Fig.2. Let

AQ = (AQ)1 =
N⋃

m=1

AmQ, (AQ)0 = Q,

(AQ)k = A((AQ)k−1).

The sequence of sets is monotonically decreasing and by [49, Theorem 4.2]

Γ = (AQ)∞ =
⋂

k∈N
(AQ)k = lim

k→∞
(AQ)k
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is the uniquely determined fractal generated by the contractions (Am)N
m=1. Un-

der these assumption the resulting Γ is the graph of a continuous function,
see [49, Sect. 4.21]. Moreover, Γ is an isotropic d-set where d = dimHΓ =
2−min(1, a2

a1
), see [49, Sect. 4.22, 4.23], and in the Farkas’ sense it is a regular

anisotropic d-set with d = a1. In our example in Fig.2 with N = 7 we calculated
d in the same way like in the proof of Proposition 4.3.2 and we get that d = log 7

κ
.

Fig.2

Example 4.3.5 Let A1, A2 be the affine contractions on Rn which map the
unit square onto the rectangles R1, R2 of sides 2−a1 and 2−a2 where 0 < a2 < a1

and a1 + a2 = 2 as in Figure 3 with the distance λ ≥ 0. In the same way as
in Example 4.3.4 we have that d = 1, in the sense of our definition. In [18,
Sect. 3.1] we can see that Farkas also has for this example d = 1.

Fig.3

4.4 Main assertion

We are now prepared to formulate our main result.

Theorem 4.4.1 Let the anisotropic d-set Γ and µ be given according to (4.30),
and

0 < d < n, 1 < p < ∞,
n

p
≥ s >

n− d

p
.
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Let ak = ak(trΓ) be the approximation numbers of the compact operator trΓ

according to (4.12). Then there exist numbers c, c′ > 0 so that for all k ∈ N

ck
1
d
(n

p
−s)− 1

p ≤ ak(trΓ : Bs,a
p (Rn) ↪→ Lp(Γ)) ≤ c′k

1
d
(n

p
−s)− 1

p . (4.36)

P r o o f. Step 1 First we prove the right-hand side of the estimate (4.36) in
Theorem 4.4.1. Again we use the wavelet expansion (3.29), (3.30). For fixed
β ∈ Nn

0 we put

trβ
Γf =

∑

j∈N0

∑

m∈Zn

Γ
λβ

jm(f)kβ
jm (4.37)

and

trβ,J
Γ f =

∑
j≤J

∑

m∈Zn

Γ
λβ

jm(f)kβ
jm, (4.38)

where the second sum has the same meaning as the last sum in (4.18). By
the same reasoning as in (4.27) and (4.29) but now for fixed β we have for
f ∈ Bs,a

p (Rn) with norm of at most 1,

‖(trβ
Γ − trβ,J

Γ )f |Lp(Γ)‖ ≤ c2−δaβ2J(n
p
−s)µ

1
p

J . (4.39)

By Definition 4.3.1 there exists a constant c > 0 independent of j ∈ N0 with
µ(Qa

jm ∩ Γ) ≤ c2−jd and we obtain that

‖(trβ
Γ − trβ,J

Γ )f |Lp(Γ)‖ ≤ c2−δaβ2J(n
p
−s)2−J d

p . (4.40)

In definition (4.21) put L = trβ,J
Γ , T = trβ

Γ, and note that for j ∈ N0,

rank

( ∑

m∈Zn

Γ
λβ

jm(f)kβ
jm

)
≤ c2jd. (4.41)

Thus we obtain by (4.38) that

rank(trβ,J
Γ ) ≤ c

∑
j≤J

2jd ≤ c′2Jd. (4.42)

Then (4.41) implies that there are two positive numbers c and c′ such that

ac2Jd(trβ
Γ) ≤ c′2−δaβ2J(n

p
−s)2−J d

p . (4.43)

For k ∈ N there are numbers Jk ∈ N such that

2Jkd ∼ k with J1 ≤ J2 ≤ · · · ≤ Jn ≤ · · · ; (4.44)
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inserted in (4.43) this leads to

ack(tr
β
Γ) ≤ c2−δaβ2Jk(n

p
−s)k−

1
p . (4.45)

Let ε > 0, for given k ∈ N we apply (4.45) to kβ ∈ N with kβ ∼ 2−εaβk. Then
it follows by the additivity property of approximation numbers and from (4.45)
that

ack(tr
β
Γ) ≤

∑

β∈Nn
0

akβ
(trβ

Γ)

≤ c′
∑

β∈Nn
0

2−δaβ2Jkβ
(n

p
−s)(2−εaβk)−

1
p

≤ c′′2Jk(n
p
−s)k−

1
p

∑

β∈Nn
0

2−aβ(δ− ε
p
)

≤ c′′′2Jk(n
p
−s)k−

1
p

(4.46)

for ε > 0 small. We used s ≤ n
p
, such that Jkβ

(n
p
− s) ≤ Jk(

n
p
− s). Finally

(4.44) implies

ack(tr
β
Γ) ≤ c′′′k

1
d
(n

p
−s)− 1

p (4.47)

and so we finished the proof of the right-hand side of the estimate (4.36).
Step 2 To verify the left-hand side of the estimate (4.36) we closely follow the
argument in [54, Sect. 4.4] for the isotropic case. Let J ∈ N and c > 0 be
suitably chosen numbers such that there are lattice points

γj,l = 2(−j−J)am with m ∈ Zn, l = 1, . . . , Mj where Mj ∼ 2jd (4.48)

with

dist(γj,l, Γ) ≤ c2−j and disjoint anisotropic balls Ba(γj,l, c2
−j+1). (4.49)

With k as in (3.11) we put for j ∈ N0,

fa
j (x) =

Mj∑

l=1

cjl2
−j(s−n

p
)k(2ja(x− γj,l)), cjl ∈ C, x ∈ Rn. (4.50)

Then we obtain by Theorem 2.3.1

‖fa
j |Bs,a

p (Rn)‖ ∼ 2j(s−n
p
)

( Mj∑

l=1

2−j(s−n
p
)|cjl|p

) 1
p

=

( Mj∑

l=1

|cjl|p
) 1

p

(4.51)
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and

‖fa
j |Lp(Γ)‖ =

( ∫

Γ

|fa
j (x)|pµ(dx)

)1/p

∼ 2−j(s−n
p
)

( Mj∑

l=1

|cjl|p
∫

Γ

kp(2ja(x− γj,l))µ(dx)

)1/p

∼ 2−j(s−n
p
)

( Mj∑

l=1

|cjl|p
∫

Γ∩Ba(γj,l,c2−j)

kp(2ja(x− γj,l))µ(dx)

)1/p

≥ c2−j(s−n
p
)2−j d

p

( Mj∑

l=1

|cjl|p
)1/p

(4.52)

using our assumption (4.30) in the last estimate. Hence

‖fa
j |Lp(Γ)‖ ≥ c2−j(s−n

p
)2−

jd
p if ‖fa

j |Bs,a
p (Rn)‖ ∼ 1. (4.53)

Now let T be an arbitrary linear operator,

T : Bs,a
p (Rn) ↪→ Lp(Γ) with rank T ≤ Mj − 1. (4.54)

Then we can find a function fa
j according to (4.50) with norm 1 in Bs,a

p (Rn)
and Tfa

j = 0. Consequently, by (4.52) and (4.53),

‖trΓ − T‖ = sup

{
‖(trΓ − T )f | Lp(Γ)‖ : ‖f |Bs,a

p (Rn)‖ ∼ 1

}

≥ ‖(trΓ − T )fa
j |Lp(Γ)‖

= ‖fa
j |Lp(Γ)‖

≥ c2−j(s−n
p
)−j d

p . (4.55)

As this is true for all T according to (4.54), we obtain

aMj
(trΓ) = inf{‖trΓ − T‖ : rank T ≤ Mj−1}

≥ c2−j(s−n
p
)−j d

p . (4.56)

For k ∈ N there are numbers jk ∈ N such that

2jkd ∼ k with jk1 ≤ jk2 ≤ · · · jkn ≤ · · · ,

inserted in (4.53) we obtain

ak(trΓ) ≥ c2jk(s−n
p
)k−

1
p

≥ c′k
1
d
(n

p
−s)− 1

p , (4.57)

i.e. the left-hand side of the estimate (4.36). 2
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Remark 4.4.2 Let Γ be the anisotropic d-set considered in [18, Sect. 3.1], see
Remark 4.3.3. Farkas proved in this situation that

ek(trΓ : B
δ+n−d

p1
,a

p1q (Rn) −→ Lp2(Γ)) ∼ ck−
δ
d

where 0 < p1, p2, q ≤ ∞, and δ > 0. Let p1 = p2 = q = p and s = δ + n−d
p

, then

ek(trΓ : Bs,a
p (Rn) −→ Lp(Γ)) ∼ ck

1
d
(n

p
−s)− 1

p .

So we have the same results for the entropy and approximation numbers in the
special case p1 = p2 which is not surprising, see (4.24), but cannot be expected
for p1 6= p2.
In view of the isotropic result [54, Theorem 2, Remark 9], if we restrict the
outcome [54] to the classical example of a compact d-set with 0 < d < n, then
we have the same result like in the anisotropic setting.





5 Eigenvalue distribution of
semi-elliptic operators

5.1 Introduction

Let us consider a differential expression with real coefficients A(D) =
∑

aαDα,

where α = (α1, . . . , αn) is a multi-index, Dα = ∂|α|
∂x

α1
1 ···∂xαn

n
, and |α| =

∑n
i=1 αi.

Let l = (l1, . . . , ln), (lk > 0, 1 ≤ k ≤ n) be a fixed multi-index. We write
(α : 2l) =

∑n
k=1

αk

2lk
. We introduce the following differential operator:

A(D)u =
∑

(α:2l)=1

aαDαu.

A(D) is said to be semi-elliptic if the corresponding polynomial

A(ξ) =
∑

(α:2l)=1

aαξα > 0

for ξ ∈ Rn \ {0}.
First we give a physical background of the study of such operators. Let Ω be
a bounded domain in the plane R2 with C∞ boundary ∂Ω, interpreted as a
membrane fixed at its boundary. Vibrations of such a membrane in R3 are
measured by the defection v(x, t), where x = (x1, x2) ∈ Ω, and t ≥ 0 stands
for the time. In other words, the point (x1, x2, 0) in R3 with (x1, x2) ∈ Ω of
the membrane at rest, is defected to (x1, x2, v(x, t)). Up to constants the usual
physical description is given by

∆v(x, t) = m(x)
∂2v(x, t)

∂t2
, x ∈ Ω, t ≥ 0, (5.1)

and
v(y, t) = 0 if y ∈ ∂Ω, t ≥ 0, (5.2)

where ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

and the right-hand side of (5.1) is Newton’s law with

the mass density m(x). To find the eigenfrequencies one has to insert v(x, t) =
u(x)eiλt with λ ∈ R in (5.1) and obtains

−∆u(x) = λ2m(x)u(x), x ∈ Ω; u(y) = 0 if y ∈ ∂Ω, (5.3)

63
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where one is interested in non-trivial solutions u(x). Hence one asks for eigen-
functions and eigenvalues of the operator

B = (−∆)−1 ◦m(·), (5.4)

where (−∆)−1 is the inverse of the Dirichlet Laplacian −∆. We use the notation
Dirichlet Laplacian always with the understanding that vanishing boundary
data at ∂Ω are incorporated into domains of definition for −∆ in the function
spaces considered, preferably Bs

pq(Ω) and Hs
p(Ω) with 1 < p ≤ ∞ and s > 1

p

(this will be specified in greater detail in the next subsection). If % is a positive

eigenvalue of B then λ = %−
1
2 is the related eigenfrequency. We are interested in

the problem of what happens when the mass density m(x) shrinks to a fractal
set Γ and a related Radon measure µ with

supp µ = Γ ⊂ Ω. (5.5)

Hence we ask for eigenfrequencies and eigenfunctions of drums with a fractal
membrane. This is what we call fractal drums and fractal Laplacians (extending
this notation to n ∈ N, where Ω let be a bounded domain in Rn).
We want to mention that the notation of fractal drums has several meanings.
As for the study of fractal membranes in smooth domains, we know only a few
further papers in literature, see T. Fujita [22], K. Naimark and M. Solomyak
[33] and [34], M. Solomyak and E. Verbitsky [40], and the more recent article
of D.E. Edmunds and H. Triebel [12].
Further results on the vibration of ”fractal drums” are obtained in different
settings. Maybe the best known version is connected with the study of the
Laplacian on a fractal, as it is done for example in the works of J. Kigami and
M.L. Lapidus, see [27], [30]. A detailed discussion on these different aspects
concerning fractal drums can de found in [49, Sect. 26.2, 30.1-30.5].
Our motivation in section 5.2 is the consideration in [54]. H. Triebel proved in
[54] for the fractal elliptic operator of type

Bs = (−∆ + id)−s ◦ idΓ, (5.6)

that Bs is a compact, non-negative, self-adjoint operator in W s
2 (Rn), where

idΓ = idΓ ◦ trΓ,

and trΓ : W s
2 → L2(Γ) is the trace operator, and idΓ is the dual of the trace

operator. If we restrict the outcome to the classical example of a compact d−set
with 0 < d < n and n− d < 2s ≤ n, we get that

λk(Bs) ∼ k−
1
d
(d+2s−n), (5.7)
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see [54, Theorem 3, Remark 10].
An important step in anisotropic function spaces was made by Farkas in the
papers [18] and [15]. He studied the operator

A−1 ◦ trΓ (5.8)

where

trΓ : B
2−d

p
,a

p1 (R2) → B
− 2−d

p′ ,a

p∞ (R2), (5.9)

and A−1 is the inverse of

Au(x) = (−1)t1
∂2t1u(x)

∂x2t1
1

+ (−1)t2
∂2t2u(x)

∂x2t2
n

+ u(x), (5.10)

and proved that the operator A−1 ◦ trΓ is compact, non-negative, and self-
adjoint in W t,a

2 (R2) and its positive eigenvalues can be estimated by

λk(A
−1 ◦ trΓ) ∼ ck−

1
d
(d+2t−2).

Our main aim in the following section is to study operators of type (5.8), in
the case Rn, where we follow the ideas in [54].

5.2 Main assertion

Let Γ be an anisotropic d−set with respect to the anisotropy a = (a1, . . . , an),
then by (4.3), with p = 2, and (1.14)

trΓ : Hs,a
2 (Rn) ↪→ L2(Γ). (5.11)

By (1.14), (4.7) and (4.8) we have that

idΓ : L2(Γ) ↪→ H−s,a
2 (Rn). (5.12)

As a consequence,

trΓ = idΓ ◦ trΓ : Hs,a
2 (Rn) ↪→ H−s,a

2 (Rn). (5.13)

Let s1, . . . , sn ∈ N and let s ∈ R be defined by

1

s
=

1

n

(
1

s1

+ · · ·+ 1

sn

)
. (5.14)

Let A be the operator defined by

Au(x) = (−1)s1
∂2s1u(x)

∂x2s1
1

+ · · ·+ (−1)sn
∂2snu(x)

∂x2sn
n

+ u(x) (5.15)
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where x ∈ Rn. Using elementary properties of the Fourier transform we have

Au =

(
(1 + ξ2s1

1 + · · ·+ ξ2sn
n )û

)∨

for any u ∈ S ′(Rn).
It is well known, see for example [31], that A is a lift operator for the scale
Bt,a

pq (Rn), t ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. More precisely A maps any space
Bt,a

pq (Rn) onto Bt−2s,a
pq (Rn) and ‖A(·)|Bt−2s,a

pq (Rn)‖ is an equivalent quasi-norm
on Bt−2s,a

pq (Rn), the inverse A−1 of A has to be understood in this way.

Theorem 5.2.1 Let Γ ⊂ Rn be an anisotropic d-set according to Definition
4.3.1 with respect to the anisotropy a. Let trΓ be the operator given by (5.13),
si ∈ N, i = 1, . . . , n, 1

s
= 1

n

(
1
s1

+ · · ·+ 1
s1

)
, A given by

Au(x) = (−1)s1
∂2s1u(x)

∂x2s1
1

+ · · ·+ (−1)sn
∂2snu(x)

∂x2sn
n

+ u(x)

and

0 < d < n,
n

2
≥ s >

n− d

2
. (5.16)

Then

T = A−1 ◦ trΓ (5.17)

is a compact, non-negative self-adjoint operator in W s,a
2 (Rn) and with null space

N(T ) = {f ∈ W s,a
2 (Rn) : trΓf = 0}. (5.18)

Let (λk)k∈N be the sequence of all positive eigenvalues of T , repeated according
to multiplicity and ordered by their magnitude. Then

λk ∼ k−
1
d
(2s−n+d), k ∈ N. (5.19)

We begin the proof of Theorem 5.2.1 with some preparation.

Lemma 5.2.2 Let s be given by (5.14) and A the operator from (5.15).

1. There exists a constant c > 0 such that (Au, u)L2(Rn) ≥ c‖u|L2(Rn)‖ for
any u ∈ L2(Rn).

2. There exist two constants c1, c2 > 0 such that

c1‖u|W s,a
2 (Rn)‖2 ≤ (Au, u)L2(Rn) ≤ c2‖u|W s,a

2 (Rn)‖2.
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P r o o f We closely follow the ideas in [18, Sect. 6.2, Lemma 6.3]. Farkas
proved the lemma for the case if n = 2, and now we extend it to the case
n ∈ N.
Let ϕ ∈ C∞

0 (Rn) and

(Aϕ,ϕ)L2(Rn) =

∫

Rn

(Aϕ)(x)ϕ(x)dx.

After integration by parts we have

(Aϕ,ϕ)L2(Rn) =

∫

Rn

(∣∣∣∣
∂s1ϕ(x)

∂xs1
1

∣∣∣∣
2

+ · · ·+
∣∣∣∣
∂snϕ(x)

∂xsn
n

∣∣∣∣
2

+ |ϕ(x)|2
)

dx

and the conclusion of the lemma follows immediately using the density of
C∞

0 (Rn) in L2(Rn) and in W s,a
2 (Rn), and the definition of the space W s,a

2 (Rn),
see (1.13). 2

We finally can prove Theorem 5.2.1.
P r o o f (of Theorem 5.2.1)
Step 1. In this step we prove that T given by (5.17) is compact, non-negative

self-adjoint operator in W s,a
2 (Rn). By (5.17) we have that T = A−1 ◦ trΓ, where

trΓ = idΓ ◦ trΓ,

trΓ : W s,a
2 (Rn) ↪→ L2(Γ)

idΓ : L2(Γ) ↪→ H−s,a
2 (Rn)

A−1 : H−s,a
2 (Rn) ↪→ W s,a

2 (Rn). (5.20)

By Lemma 5.2.2 we have that the operator A is positive definite as an operator
acting in L2(Rn) and we may fix the norm in W s,a

2 (Rn) by ‖A1/2(·)|L2(Rn)‖ and
a corresponding scalar product. By Proposition 4.1.1, (1.14) and (4.2) there
exists a constant c > 0 such that

‖trΓϕ|L2(Γ)‖ ≤ c‖ϕ|W s,a
2 (Rn)‖ for all ϕ ∈ W s,a

2 (Rn).

Defining

q(f, g) =

∫

Γ

f(γ)g(γ)dµ(γ) for any f, g ∈ W s,a
2 (Rn),

it is clear that q(·, ·) is a non-negative quadratic form in W s,a
2 (Rn). Then there

exists a non-negative and self-adjoint operator T̃ uniquely determined such that

q(f, g) = (T̃ f, g)W s,a
2 (Rn) for any f, g ∈ W s,a

2 (Rn),
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see for example [48, p.91]. Furthermore,

‖trΓf |L2(Γ)‖ = ‖
√

T̃ f |W s,a
2 (Rn)‖ (5.21)

where
√

T̃ = T̃ 1/2. So it remains to prove that the above operator is the same
as in (5.17). Let f ∈ W s,a

2 (Rn) and ϕ ∈ D(Rn). Then by (4.4), (4.8) and (5.13)

(trΓf, ϕ)L2(Rn) =

∫

Γ

f(γ)ϕ(γ)dµ(γ) = (T̃ f, ϕ)W s,a
2 (Rn)

= (A1/2T̃ f, A1/2ϕ)L2(Rn)

= (AT̃f, ϕ)L2(Rn) (5.22)

the second equality in (5.22) being justified by the fact that we fixed the scalar
product in W s,a

2 (Rn) by

(u, v)W s,a
2 (Rn) = (A1/2u,A1/2v)L2(Rn).

Considered as a dual pairing in (D(Rn), D′(Rn)) we obtain AT̃f = trΓf , and
we have that T̃ = T by (5.17).
The compactness is a consequence of Theorem 4.4.1 and (5.20).
Step 2. We prove that there is a number c > 0 such that

λk ≤ ck−
1
d
(2s−n+d), k ∈ N. (5.23)

By (4.8) the identification operator idΓ is the dual of the trace operator trΓ. By
the usual assertion for dual operators, Proposition 4.2.2 (i), and Theorem 4.4.1
we have

ak(idΓ) = ak(trΓ) ∼ k
1
d
(n
2
−s)− 1

2 , k ∈ N, (5.24)

and we need that n
2
≥ s > n−d

2
. By (5.20) and the multiplication property for

approximation numbers, Lemma 4.2.1 (iii), one obtains

a2k(T ) ≤ c ak(trΓ)ak(idΓ) ∼ k−
1
d
(2s−n+d). (5.25)

By Proposition 4.2.2 (ii) and Step 2 we have that the approximation numbers
of T coincide with its eigenvalues. Then (5.23) follows from (5.25).
Step 3. To obtain the converse of (5.23) we use the same argument as in
Theorem 4.4.1, Step 2, now with p = 2. Based on (4.48)-(4.49) we put

fa
j (x) =

Mj∑

l=1

cjl2
−j(s−n

2
)k(2ja(x− γj,l)), cjl ∈ C, x ∈ Rn, (5.26)
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where Mj ∼ 2jd. By (5.21) and by (4.51)-(4.53)

‖
√

Tfa
j |W s,a

2 (Rn)‖ ∼ c2−j(s−n
2
)2−j d

2 if ‖fa
j |W s,a

2 (Rn)‖ ∼ 1. (5.27)

By the same arguments as in connection with (4.54)-(4.55) we obtain

aMj
(
√

T ) ≥ c2−j(s−n
2
)2−j d

2 . (5.28)

By (4.57) and by ak(
√

T ) = λ
1
2
k we obtain

λk ≥ ck−
1
d
(2s−n+d), k ∈ N. (5.29)

2

Remark 5.2.3 (i) Let Γ be the anisotropic d−set considered in [18, Sect. 3.1],
see Remark 4.3.3. Farkas proved in [18, Sect.4] for the operator (5.8) that

λk(A
−1 ◦ trΓ) ∼ ck−

1
d
(d+2t−2).

If we take the case n = 2 and t = s we have the same result

λk ∼ k−
1
d
(2t−2+d).

(ii) If we restrict to the case n = 2, s1 = 1 and s2 = 2 then

Au(x) = −∂2u(x)

∂x2
1

+
∂4u(x)

∂x4
2

+ u(x), x = (x1, x2) ∈ R2. (5.30)

Let again Γ be the anisotropic d−set considered in [18, Sect. 3.1], with
respect to the anisotropy a = (4

3
, 2

3
). Farkas obtained in [16, Sect. 4] that:

λk(A
−1 ◦ trΓ) ∼ ck−

1
d
(d+ 2

3
),

where trΓ is given by (5.9) and A−1 is the inverse of (5.30). For this
special case we have also the same result. Operators of this type have
been investigated by H.Triebel in [46] and by V.Shevchik in [39].

(iii) In view of the isotropic results [54, Theorem 3, Remark 10] for the oper-
ator

Bs = (id−∆)−s ◦ idµ

we have the same results like in the anisotropic case if we restrict the
outcome to the classical example of a compact d−set with 0 < d < n and
n− d < 2s ≤ n, see (5.7).
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